目的有效滤除带钢表面缺陷图像高斯噪声。方法高斯噪声是影响带钢图像质量的主要噪声类型之一,针对带钢表面缺陷图像高斯噪声去噪,首先对传统K-SVD(K-means and singular value decomposition)算法中的字典进行升级改造,然后采用正交匹...目的有效滤除带钢表面缺陷图像高斯噪声。方法高斯噪声是影响带钢图像质量的主要噪声类型之一,针对带钢表面缺陷图像高斯噪声去噪,首先对传统K-SVD(K-means and singular value decomposition)算法中的字典进行升级改造,然后采用正交匹配追踪(OMP,Orthogonal Matching Pursuit)算法对图像进行重构,滤除噪声,最后运用此算法对缺陷图像进行高斯滤波处理。为验证该算法去噪效果,选取几种常见的典型缺陷图像(划伤、气泡、氧化色、粘结纹)进行测试仿真,并选用中值滤波、均值滤波、小波变换、维纳滤波、3维块匹配(BM3D)等多种传统滤波方法进行比较。结果该算法对四种典型缺陷去噪的PSNR(Peak Signal to Noise Ratio)值平均可达33.976 d B,MSE(Mean Square Error)平均值为27.607,SSIM(Structural Similarity)平均值为0.912。结论该算法对带钢表面缺陷重构图像的边缘细节清晰,PSNR、MSE、SSIM三个性能指标明显优于其他传统滤波算法,去噪效果良好。展开更多
航空发动机叶尖间隙是监控其运行状态的有效参数,现有间隙测量方法很难满足超高转速下间隙距离的奈奎斯特采样率,因此无法有效提取精确的叶尖间隙值。本文基于压缩感知原理,针对间隙距离数据特征提出一种采用K-SVD(K-singular value dec...航空发动机叶尖间隙是监控其运行状态的有效参数,现有间隙测量方法很难满足超高转速下间隙距离的奈奎斯特采样率,因此无法有效提取精确的叶尖间隙值。本文基于压缩感知原理,针对间隙距离数据特征提出一种采用K-SVD(K-singular value decomposition)字典训练稀疏基的数据重构方法,该方法首先构建出K-SVD字典稀疏基对数据进行稀疏化表示,然后使用m序列高斯随机矩阵对数据进行压缩观测,最后基于压缩欠采样观测值使用正交匹配追踪算法对数据进行重构,进而精确提取叶尖间隙值。实验结果表明,在欠采样条件下间隙距离数据可精确恢复重构,与高采样率下的间隙数据相比,重构误差不超过0.02 mm。展开更多
文摘目的有效滤除带钢表面缺陷图像高斯噪声。方法高斯噪声是影响带钢图像质量的主要噪声类型之一,针对带钢表面缺陷图像高斯噪声去噪,首先对传统K-SVD(K-means and singular value decomposition)算法中的字典进行升级改造,然后采用正交匹配追踪(OMP,Orthogonal Matching Pursuit)算法对图像进行重构,滤除噪声,最后运用此算法对缺陷图像进行高斯滤波处理。为验证该算法去噪效果,选取几种常见的典型缺陷图像(划伤、气泡、氧化色、粘结纹)进行测试仿真,并选用中值滤波、均值滤波、小波变换、维纳滤波、3维块匹配(BM3D)等多种传统滤波方法进行比较。结果该算法对四种典型缺陷去噪的PSNR(Peak Signal to Noise Ratio)值平均可达33.976 d B,MSE(Mean Square Error)平均值为27.607,SSIM(Structural Similarity)平均值为0.912。结论该算法对带钢表面缺陷重构图像的边缘细节清晰,PSNR、MSE、SSIM三个性能指标明显优于其他传统滤波算法,去噪效果良好。
文摘航空发动机叶尖间隙是监控其运行状态的有效参数,现有间隙测量方法很难满足超高转速下间隙距离的奈奎斯特采样率,因此无法有效提取精确的叶尖间隙值。本文基于压缩感知原理,针对间隙距离数据特征提出一种采用K-SVD(K-singular value decomposition)字典训练稀疏基的数据重构方法,该方法首先构建出K-SVD字典稀疏基对数据进行稀疏化表示,然后使用m序列高斯随机矩阵对数据进行压缩观测,最后基于压缩欠采样观测值使用正交匹配追踪算法对数据进行重构,进而精确提取叶尖间隙值。实验结果表明,在欠采样条件下间隙距离数据可精确恢复重构,与高采样率下的间隙数据相比,重构误差不超过0.02 mm。