A new temporal gravity field model called WHU-Grace01s solely recovered from Gravity Recovery and Climate Experiment (GRACE) K-Band Range Rate (KBRR) data based on dynamic integral approach is presented in this pa...A new temporal gravity field model called WHU-Grace01s solely recovered from Gravity Recovery and Climate Experiment (GRACE) K-Band Range Rate (KBRR) data based on dynamic integral approach is presented in this paper. After meticulously preprocessing of the GRACE KBRR data, the root mean square of its post residuals is about 0.2 micrometers per second, and seventy-two monthly temporal solutions truncated to degree and order 60 are computed for the period from January 2003 to December 2008. After applying the combi- nation filter in WHU-Grace01s, the global temporal signals show obvious periodical change rules in the large-scale fiver basins. In terms of the degree variance, our solution is smaller at high degrees, and shows a good consistency at the rest of degrees with the Release 05 models from Center for Space Research (CSR), GeoForschungsZentrum Potsdam (GFZ) and Jet Pro- pulsion Laboratory 0PL). Compared with other published models in terms of equivalent water height distribution, our solution is consistent with those published by CSR, GFZ, JPL, Delft institute of Earth Observation and Space system (DEOS), Tongji University (Tongji), Institute of Theoretical Geodesy (ITG), Astronomical Institute in University of Bern (AIUB) and Groupe de Recherche de Geodesie Spatiale (GRGS}, which indicates that the accuracy of WHU-Grace01s has a good consistency with the previously published GRACE solutions.展开更多
With the Gravity Recovery and Climate Experiment {GRACE) mission as the prime example, an overview is given on the management and processing of Level IA data of a low-low satellite to satellite tracking mission. To i...With the Gravity Recovery and Climate Experiment {GRACE) mission as the prime example, an overview is given on the management and processing of Level IA data of a low-low satellite to satellite tracking mission. To illustrate the underlying principle and algorithm, a detailed study is made on the K-band ranging (KBR) assembly, which includes the measurement principles, modeling of noises, the generation of Level 1A data from that of Level 0 as well as Level IA to Level IB data processing.展开更多
卫卫跟踪(SST)技术是目前地球重力场测量最有价值和应用前景的方法之一。高精度K波段星间微波测距系统(KBR K Band Ranging System)是低低卫卫跟踪(SST-ll)重力卫星的关键有效载荷,它是一微米量级的测距系统,通过处理高精度的星间距离...卫卫跟踪(SST)技术是目前地球重力场测量最有价值和应用前景的方法之一。高精度K波段星间微波测距系统(KBR K Band Ranging System)是低低卫卫跟踪(SST-ll)重力卫星的关键有效载荷,它是一微米量级的测距系统,通过处理高精度的星间距离和距离变化率数据,可以恢复出地球重力场。在研究星间双路微波测距原理的基础上,提出了一种KBR系统的基本结构,详细描述了数据处理过程和KBR系统研究需要突破的关键技术,分析了国内目前的研究水平,给出了我国未来开展KBR系统研究的一些建议。展开更多
卫卫跟踪(SST)技术是当前地球重力场测量最有价值和应用前景的方法之一.高精度星间测距系统是低低卫卫跟踪(SST-Ⅱ)重力卫星的关键有效载荷.GRACE卫星携带的K波段测距系统(KBR K Band Ranging System)是一微米量级的测距系统,通过处理...卫卫跟踪(SST)技术是当前地球重力场测量最有价值和应用前景的方法之一.高精度星间测距系统是低低卫卫跟踪(SST-Ⅱ)重力卫星的关键有效载荷.GRACE卫星携带的K波段测距系统(KBR K Band Ranging System)是一微米量级的测距系统,通过处理高精度的星间距离和距离变化率数据,可以恢复出地球重力场.GRACE后续计划又提出了一种更高精度的激光干涉测距系统.在研究KBR及激光干涉测距系统测量原理的基础上,提出了一种KBR系统的基本结构,详细分析了两种测距系统的关键技术及国内目前的研究水平,提出了我国开展星间测距系统研究的一些建议.展开更多
基金supported by the National 973Program of China(2013CB733302)the National Natural Science Foundation of China(41131067,41174020,41374023,41474019)+2 种基金the Open Research Fund Program of the State Key Laboratory of Geodesy and Earth's Dynamics(SKLGED2015-1-3-E)the open fund of State Key Laboratory of Geographic Information Engineering(SKLGIE2013-M-1-3)the open fund of Key Laboratory of Geospace Environment and Geodesy,Ministry of Education(13-02-05)
文摘A new temporal gravity field model called WHU-Grace01s solely recovered from Gravity Recovery and Climate Experiment (GRACE) K-Band Range Rate (KBRR) data based on dynamic integral approach is presented in this paper. After meticulously preprocessing of the GRACE KBRR data, the root mean square of its post residuals is about 0.2 micrometers per second, and seventy-two monthly temporal solutions truncated to degree and order 60 are computed for the period from January 2003 to December 2008. After applying the combi- nation filter in WHU-Grace01s, the global temporal signals show obvious periodical change rules in the large-scale fiver basins. In terms of the degree variance, our solution is smaller at high degrees, and shows a good consistency at the rest of degrees with the Release 05 models from Center for Space Research (CSR), GeoForschungsZentrum Potsdam (GFZ) and Jet Pro- pulsion Laboratory 0PL). Compared with other published models in terms of equivalent water height distribution, our solution is consistent with those published by CSR, GFZ, JPL, Delft institute of Earth Observation and Space system (DEOS), Tongji University (Tongji), Institute of Theoretical Geodesy (ITG), Astronomical Institute in University of Bern (AIUB) and Groupe de Recherche de Geodesie Spatiale (GRGS}, which indicates that the accuracy of WHU-Grace01s has a good consistency with the previously published GRACE solutions.
基金the project entitled"Advanced Gravity Measurement in Space"supported by the National Space Science Center,Chinese Academy of Sciences Profs.Wenrui Hu and Houze Xu's effort to promote satellite gravity research in China motivated the feasibility study in the first placeSupport from National Natural Science Foundation of China(11305255,11171329 and 41404019)funding from State Key Laboratory of Geodesy and Earth's Dynamics,Institute of Geodesy and Geophysics,Chinese Academy of Sciences(SKLGED2013-3-8-E)are acknowledged
文摘With the Gravity Recovery and Climate Experiment {GRACE) mission as the prime example, an overview is given on the management and processing of Level IA data of a low-low satellite to satellite tracking mission. To illustrate the underlying principle and algorithm, a detailed study is made on the K-band ranging (KBR) assembly, which includes the measurement principles, modeling of noises, the generation of Level 1A data from that of Level 0 as well as Level IA to Level IB data processing.
文摘卫卫跟踪(SST)技术是目前地球重力场测量最有价值和应用前景的方法之一。高精度K波段星间微波测距系统(KBR K Band Ranging System)是低低卫卫跟踪(SST-ll)重力卫星的关键有效载荷,它是一微米量级的测距系统,通过处理高精度的星间距离和距离变化率数据,可以恢复出地球重力场。在研究星间双路微波测距原理的基础上,提出了一种KBR系统的基本结构,详细描述了数据处理过程和KBR系统研究需要突破的关键技术,分析了国内目前的研究水平,给出了我国未来开展KBR系统研究的一些建议。
文摘卫卫跟踪(SST)技术是当前地球重力场测量最有价值和应用前景的方法之一.高精度星间测距系统是低低卫卫跟踪(SST-Ⅱ)重力卫星的关键有效载荷.GRACE卫星携带的K波段测距系统(KBR K Band Ranging System)是一微米量级的测距系统,通过处理高精度的星间距离和距离变化率数据,可以恢复出地球重力场.GRACE后续计划又提出了一种更高精度的激光干涉测距系统.在研究KBR及激光干涉测距系统测量原理的基础上,提出了一种KBR系统的基本结构,详细分析了两种测距系统的关键技术及国内目前的研究水平,提出了我国开展星间测距系统研究的一些建议.