Tarq geochemical 1:100,000 Sheet is located in Isfahan province which is investigated by Iran’s Geological and Explorations Organization using stream sediment analyzes. This area has stratigraphy of Precambrian to Qu...Tarq geochemical 1:100,000 Sheet is located in Isfahan province which is investigated by Iran’s Geological and Explorations Organization using stream sediment analyzes. This area has stratigraphy of Precambrian to Quaternary rocks and is located in the Central Iran zone. According to the presence of signs of gold mineralization in this area, it is necessary to identify important mineral areas in this area. Therefore, finding information is necessary about the relationship and monitoring the elements of gold, arsenic, and antimony relative to each other in this area to determine the extent of geochemical halos and to estimate the grade. Therefore, a well-known and useful K-means method is used for monitoring the elements in the present study, this is a clustering method based on minimizing the total Euclidean distances of each sample from the center of the classes which are assigned to them. In this research, the clustering quality function and the utility rate of the sample have been used in the desired cluster (S(i)) to determine the optimum number of clusters. Finally, with regard to the cluster centers and the results, the equations were used to predict the amount of the gold element based on four parameters of arsenic and antimony grade, length and width of sampling points.展开更多
Grade estimation is an important phase of mining projects, and one that is considered a challenge due in part to the structural complexities in mineral ore deposits.To overcome this challenge, various techniques have ...Grade estimation is an important phase of mining projects, and one that is considered a challenge due in part to the structural complexities in mineral ore deposits.To overcome this challenge, various techniques have been used in the past. This paper introduces an approach for estimating Au ore grades within a mining deposit using k-means and principal component analysis(PCA). The Khooni district was selected as the case study. This region is interesting geologically, in part because it is considered an important gold source. The study area is situated approximately 60km northeast of the Anarak city and 270km from Esfahan. Through PCA, we sought to understand the relationship between the elements of gold,arsenic, and antimony. Then, by clustering, the behavior of these elements was investigated. One of the most famous and efficient clustering methods is k-means, based on minimizing the total Euclidean distance from each class center. Using the combined results and characteristics of the cluster centers, the gold grade was determined with a correlation coefficient of 91%. An estimation equation for gold grade was derived based on four parameters: arsenic and antimony content, and length and width of the sampling points. The results demonstrate that this approach is faster and more accurate than existing methodologies for ore grade estimation.展开更多
Geochemical data of altered wall rocks are important for the metallogenic prognosis of hydrothermal gold deposits. Indicator elements of altered wall rocks such as K, AI, As, Sb, and Hg have been successfully used to ...Geochemical data of altered wall rocks are important for the metallogenic prognosis of hydrothermal gold deposits. Indicator elements of altered wall rocks such as K, AI, As, Sb, and Hg have been successfully used to assess gold anomalies in lithogeochemicai survey. However, such researches have rarely been done in stream sediment survey for the exploration of gold from various landscapes. On the basis of the geochemical analysis of altered wall rocks of gold deposits in the cold desert areas of Gansu (甘肃) Province in Northwest China, it is found that the combination of AI, K, and Sn could serve as an important indicator of hydrothermal gold deposits and can be used to evaluate the metallogenic prospective of gold anomalies in stream sediments. More studies performed in the cold grassland areas and the moderate-low relief mountainous areas showed that, both weak and strong geochemical anomalies can be extracted, if strictly abiding by the ways of calculation and addition of the binary values of the indicator elements with equal weight, and this provides the sound delineation of metallogenic perspective areas.展开更多
Geologic, petrographic and petrochemical studies of the late Mesozoic K-rich melanocratic dykes, including lamprophyres, andesite porphyrites and dacite-porphyry in the gold field system in the Jiaodong Peninsula, Chi...Geologic, petrographic and petrochemical studies of the late Mesozoic K-rich melanocratic dykes, including lamprophyres, andesite porphyrites and dacite-porphyry in the gold field system in the Jiaodong Peninsula, China, have shown that these dykes are characterized by rich potassium and alkali but poor titanium. They belong to an ultra-high potassic, shoshonitic and high potassic calc-alkaline rock series. The parental magma has relatively high initial strontium ratios ((87Sr/86Sr),=0.70895-0.71140) and low (143Nd/144Nd)1 ratios (varying from 0.51135 to 0.51231); and its δ18Osmow, whole rock values vary from +5.8%c to +10.6%c with a mean of +7.1%c. These features suggest that the source region of the magma is an enriched mantle wedge transformed from a continental lithosphere mantle which has experienced metasomatism by mantle-derived fluids with H2O-dominated fluids that were provided during the underthrusting of an ocean crust. The initial magma was generated by low-degree partial melting of the enriched mantle in its mature stage in the back-arc spreading environment. The evolution of magmas is associated with two trends, i.e., fractional crystallization and mixing with or intensive contamination by palaeo-crust materials or metamorphic rocks. The former process is evident in the gold field system of quartz-vein type, whereas the latter is dominated in the gold field system of the altered-rock type. This conclusion is very important for more detailed study of petrogenesis and mineralization through the crust-mantle interaction (exchange) in the Mesozoic in this region.展开更多
文摘Tarq geochemical 1:100,000 Sheet is located in Isfahan province which is investigated by Iran’s Geological and Explorations Organization using stream sediment analyzes. This area has stratigraphy of Precambrian to Quaternary rocks and is located in the Central Iran zone. According to the presence of signs of gold mineralization in this area, it is necessary to identify important mineral areas in this area. Therefore, finding information is necessary about the relationship and monitoring the elements of gold, arsenic, and antimony relative to each other in this area to determine the extent of geochemical halos and to estimate the grade. Therefore, a well-known and useful K-means method is used for monitoring the elements in the present study, this is a clustering method based on minimizing the total Euclidean distances of each sample from the center of the classes which are assigned to them. In this research, the clustering quality function and the utility rate of the sample have been used in the desired cluster (S(i)) to determine the optimum number of clusters. Finally, with regard to the cluster centers and the results, the equations were used to predict the amount of the gold element based on four parameters of arsenic and antimony grade, length and width of sampling points.
文摘Grade estimation is an important phase of mining projects, and one that is considered a challenge due in part to the structural complexities in mineral ore deposits.To overcome this challenge, various techniques have been used in the past. This paper introduces an approach for estimating Au ore grades within a mining deposit using k-means and principal component analysis(PCA). The Khooni district was selected as the case study. This region is interesting geologically, in part because it is considered an important gold source. The study area is situated approximately 60km northeast of the Anarak city and 270km from Esfahan. Through PCA, we sought to understand the relationship between the elements of gold,arsenic, and antimony. Then, by clustering, the behavior of these elements was investigated. One of the most famous and efficient clustering methods is k-means, based on minimizing the total Euclidean distance from each class center. Using the combined results and characteristics of the cluster centers, the gold grade was determined with a correlation coefficient of 91%. An estimation equation for gold grade was derived based on four parameters: arsenic and antimony content, and length and width of the sampling points. The results demonstrate that this approach is faster and more accurate than existing methodologies for ore grade estimation.
基金This paper is supported by China Geological Survey (No. 200310200040).
文摘Geochemical data of altered wall rocks are important for the metallogenic prognosis of hydrothermal gold deposits. Indicator elements of altered wall rocks such as K, AI, As, Sb, and Hg have been successfully used to assess gold anomalies in lithogeochemicai survey. However, such researches have rarely been done in stream sediment survey for the exploration of gold from various landscapes. On the basis of the geochemical analysis of altered wall rocks of gold deposits in the cold desert areas of Gansu (甘肃) Province in Northwest China, it is found that the combination of AI, K, and Sn could serve as an important indicator of hydrothermal gold deposits and can be used to evaluate the metallogenic prospective of gold anomalies in stream sediments. More studies performed in the cold grassland areas and the moderate-low relief mountainous areas showed that, both weak and strong geochemical anomalies can be extracted, if strictly abiding by the ways of calculation and addition of the binary values of the indicator elements with equal weight, and this provides the sound delineation of metallogenic perspective areas.
文摘Geologic, petrographic and petrochemical studies of the late Mesozoic K-rich melanocratic dykes, including lamprophyres, andesite porphyrites and dacite-porphyry in the gold field system in the Jiaodong Peninsula, China, have shown that these dykes are characterized by rich potassium and alkali but poor titanium. They belong to an ultra-high potassic, shoshonitic and high potassic calc-alkaline rock series. The parental magma has relatively high initial strontium ratios ((87Sr/86Sr),=0.70895-0.71140) and low (143Nd/144Nd)1 ratios (varying from 0.51135 to 0.51231); and its δ18Osmow, whole rock values vary from +5.8%c to +10.6%c with a mean of +7.1%c. These features suggest that the source region of the magma is an enriched mantle wedge transformed from a continental lithosphere mantle which has experienced metasomatism by mantle-derived fluids with H2O-dominated fluids that were provided during the underthrusting of an ocean crust. The initial magma was generated by low-degree partial melting of the enriched mantle in its mature stage in the back-arc spreading environment. The evolution of magmas is associated with two trends, i.e., fractional crystallization and mixing with or intensive contamination by palaeo-crust materials or metamorphic rocks. The former process is evident in the gold field system of quartz-vein type, whereas the latter is dominated in the gold field system of the altered-rock type. This conclusion is very important for more detailed study of petrogenesis and mineralization through the crust-mantle interaction (exchange) in the Mesozoic in this region.