The introduction of alleles into commercial crop breeding pipelines is both time consuming and costly.Two technologies that are disrupting traditional breeding processes are doubled haploid(DH)breeding and genome edit...The introduction of alleles into commercial crop breeding pipelines is both time consuming and costly.Two technologies that are disrupting traditional breeding processes are doubled haploid(DH)breeding and genome editing(GE).Recently,these techniques were combined into a GE trait delivery system called HI-Edit(Haploid Inducer-Edit).In HI-Edit,the pollen of a haploid inducer line is reprogrammed to deliver GE traits to any variety,obviating recurrent selection.For HI-Edit to operate at scale,an efficient transformable HI line is needed,but most maize varieties are recalcitrant to transformation,and haploid inducers are especially difficult to transform given their aberrant reproductive behaviors.Leveraging marker assisted selection and a three-tiered testing scheme,we report the development of new Iodent and Stiff Stalk maize germplasm that are transformable,have high haploid induction rates,and exhibit a robust,genetically-dominant anthocyanin native trait that may be used for rapid haploid identification.We show that transformation of these elite‘‘HI-Edit”lines is enhanced using the BABYBOOM and WUSCHEL morphogenetic factors.Finally,we evaluate the HI-Edit performance of one of the lines against both Stiff Stalk and non-Stiff Stalk testers.The strategy and results of this study should facilitate the development of commercially scalable HI-Edit systems in diverse crops.展开更多
核函数主元分析KPCA(kernel princ ipal component analysis)能够提取机械故障信号的非线性特征,可以应用于机械故障状态识别。但是KPCA是一种无监督的特征提取方法,不能利用故障信号中的类别信息。本文介绍了一种核最优K-L变换,它可以...核函数主元分析KPCA(kernel princ ipal component analysis)能够提取机械故障信号的非线性特征,可以应用于机械故障状态识别。但是KPCA是一种无监督的特征提取方法,不能利用故障信号中的类别信息。本文介绍了一种核最优K-L变换,它可以充分利用类别信息,它能够提取类平均向量和方差向量中的判别信息,使提取的特征分类效果更好。在齿轮故障诊断实验中,采用核最优K-L变换提取故障信号的非线性特征,实验结果表明核最优K-L变换相比KPCA故障识别结果更为理想。展开更多
文摘The introduction of alleles into commercial crop breeding pipelines is both time consuming and costly.Two technologies that are disrupting traditional breeding processes are doubled haploid(DH)breeding and genome editing(GE).Recently,these techniques were combined into a GE trait delivery system called HI-Edit(Haploid Inducer-Edit).In HI-Edit,the pollen of a haploid inducer line is reprogrammed to deliver GE traits to any variety,obviating recurrent selection.For HI-Edit to operate at scale,an efficient transformable HI line is needed,but most maize varieties are recalcitrant to transformation,and haploid inducers are especially difficult to transform given their aberrant reproductive behaviors.Leveraging marker assisted selection and a three-tiered testing scheme,we report the development of new Iodent and Stiff Stalk maize germplasm that are transformable,have high haploid induction rates,and exhibit a robust,genetically-dominant anthocyanin native trait that may be used for rapid haploid identification.We show that transformation of these elite‘‘HI-Edit”lines is enhanced using the BABYBOOM and WUSCHEL morphogenetic factors.Finally,we evaluate the HI-Edit performance of one of the lines against both Stiff Stalk and non-Stiff Stalk testers.The strategy and results of this study should facilitate the development of commercially scalable HI-Edit systems in diverse crops.
文摘核函数主元分析KPCA(kernel princ ipal component analysis)能够提取机械故障信号的非线性特征,可以应用于机械故障状态识别。但是KPCA是一种无监督的特征提取方法,不能利用故障信号中的类别信息。本文介绍了一种核最优K-L变换,它可以充分利用类别信息,它能够提取类平均向量和方差向量中的判别信息,使提取的特征分类效果更好。在齿轮故障诊断实验中,采用核最优K-L变换提取故障信号的非线性特征,实验结果表明核最优K-L变换相比KPCA故障识别结果更为理想。