This paper is concerned with the inverse scattering problems for Schrdinger equations with compactly supported potentials.For purpose of reconstructing the support of the potential,we derive a factorization of the sca...This paper is concerned with the inverse scattering problems for Schrdinger equations with compactly supported potentials.For purpose of reconstructing the support of the potential,we derive a factorization of the scattering amplitude operator A and prove that the ranges of (A* A) ^1/4 and G which maps more general incident fields than plane waves into the scattering amplitude coincide.As an application we characterize the support of the potential using only the spectral data of the operator A.展开更多
The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF me...The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.展开更多
In this investigation a simple method developed by introducing spin to Schrodinger equation to study the relativistic hydrogen atom. By separating Schrodinger equation to radial and angular parts, we modify these part...In this investigation a simple method developed by introducing spin to Schrodinger equation to study the relativistic hydrogen atom. By separating Schrodinger equation to radial and angular parts, we modify these parts to the associated Laguerre and Jacobi differential equations, respectively. Bound state Energy levels and wave functions of relativistic Schrodinger equation for Hydrogen atom have been obtained. Calculated results well matched to the results of Dirac’s relativistic theory. Finally the factorization method and supersymmetry approaches in quantum mechanics, give us some first order raising and lowering operators, which help us to obtain all quantum states and energy levels for different values of the quantum numbers n and m.展开更多
By using the concept of finite-part integral, a set of hypersingular integro-differential equations for multiple interracial cracks in a three-dimensional infinite bimaterial subjected to arbitrary loads is derived. I...By using the concept of finite-part integral, a set of hypersingular integro-differential equations for multiple interracial cracks in a three-dimensional infinite bimaterial subjected to arbitrary loads is derived. In the numerical analysis, unknown displacement discontinuities are approximated with the products of the fundamental density functions and power series. The fundamental functions are chosen to express a two-dimensional interface crack rigorously. As illustrative examples, the stress intensity factors for two rectangular interface cracks are calculated for various spacing, crack shape and elastic constants. It is shown that the stress intensity factors decrease with the crack spacing.展开更多
For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geomet...For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.展开更多
To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection techniq...To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11).展开更多
Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, a...Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, and then,its numerical method is proposed by the numerical method of the singular integral equations combined with boundary element method. Moreover, the singular nature of temperature gradient field near the crack front is proved by the main-part analysis method of the singular integral equation, and the singular temperature gradients are exactly obtained. Finally, several typical examples calculated.展开更多
This study was completed by an extensive mathematical analysis. New equation to sludge filtration processes has been proposed for use in routine laboratory. The equation has been suggested to replace Ademiluyi’s cake...This study was completed by an extensive mathematical analysis. New equation to sludge filtration processes has been proposed for use in routine laboratory. The equation has been suggested to replace Ademiluyi’s cake filtration equation in view of the limitations of the latter. The new equation can be used for sludges whose compressibility factor is more than one but Ademiluyi’s cake filtration equation can only be used for sludges whose compressibility coefficient is less than one. The new sludge filtration equation was derived using tannθ reduction method. The generalized equation thus obtained resembles Ademiluyi’s equation in the mode of parameter combination except the presence of summation notation in the new equation.展开更多
The general approach for solving the nonlinear equations is linearizing the equations and forming various iterative procedures, then executing the numerical simulation. For the strongly nonlinear problems, the solutio...The general approach for solving the nonlinear equations is linearizing the equations and forming various iterative procedures, then executing the numerical simulation. For the strongly nonlinear problems, the solution obtained in the iterative process is always difficult, even divergent due to the numerical instability. It can not fulfill the engineering requirements. Newton's method and its variants can not settle this problem. As a result, the application of numerical simulation for the strongly nonlinear problems is limited. An auto-adjustable damping method has been presented in this paper. This is a further improvement of Newton's method with damping factor. A set of vector of damping factor is introduced. This set of vector can be adjusted continuously during the iterative process in accordance with the judgement and adjustment. An effective convergence coefficient and quichening coefficient are employed to relax the restricted requirements for the initial values and to shorten the iterative process. Then, the numerical stability will be ensured for the solution of complicated strongly nonlinear equations. Using this method, some complicated strongly nonlinear heat transfer problems in airplanes and aeroengines have been numerically simulated successfully. It can be used for the numerical simulation of strongly nonlinear problems in engineering such as nonlinear hydrodynamics and aerodynamics, heat transfer and structural dynamic response etc.展开更多
Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equation...Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross_section is not thin_walled, but of small torsion rigidity is proposed. Some numerical examples are given.展开更多
In this paper, the Klein-Gordon equation with equal scalar and vector Makaxov potentials is studied by the factorization method. The energy equation and the normalized bound state solutions are obtained, a recurrence ...In this paper, the Klein-Gordon equation with equal scalar and vector Makaxov potentials is studied by the factorization method. The energy equation and the normalized bound state solutions are obtained, a recurrence relation between the different principal quantum number n corresponding to a certain angular quantum number l is established and some special cases of Makarov potential axe discussed.展开更多
Based on Zak's stress function, the eigen-equation of stress singularity ofbi-materials with a V-notch was obtained. A new definition of stress intensity factor for a perpendicular interfacial V-notch of bi-material ...Based on Zak's stress function, the eigen-equation of stress singularity ofbi-materials with a V-notch was obtained. A new definition of stress intensity factor for a perpendicular interfacial V-notch of bi-material was put forward. The effects of shear modulus and Poisson's ratio of the matrix material and attaching material on eigen-values were analyzed. A generalized expression for calculating/(i of the perpendicular V-notch of bi-materials was obtained by means of stress extrapolation. Effects of notch depth, notch angle and Poisson's ratio of materials on the singular stress field near the tip of the V-notch were analyzed systematically with numerical simulations. As an example, a finite plate with double edge notches under uniaxial uniform tension was calculated by the method presented and the influence of the notch angle and Poisson's ratio on the stress singularity near the tip of notch was obtained.展开更多
Using the single crack solution and the regular solution elf plane harmonic function, the problem of Saint-Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equatio...Using the single crack solution and the regular solution elf plane harmonic function, the problem of Saint-Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross-section is not thin-walled, but of small torsion rigidity is proposed. Some numerical examples are given.展开更多
Stress intensity factors for a three dimensional rectangular interfacial crack were considered using the body force method. In the numerical calculations, unknown body force densities were approximated by the products...Stress intensity factors for a three dimensional rectangular interfacial crack were considered using the body force method. In the numerical calculations, unknown body force densities were approximated by the products of the fundamental densities and power series; here the fundamental densities are chosen to express singular stress fields due to an interface crack exactly. The calculation shows that the numerical results are satisfied. The stress intensity factors for a rectangular interface crack were indicated accurately with the varying aspect ratio, and bimaterial parameter.展开更多
Based on the sub-region generalized variationM principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and effic...Based on the sub-region generalized variationM principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.展开更多
A mathematical model for the fluidized bed biofilm reactor (FBBR) is discussed. An approximate analytical solution of concentration of phenol is obtained using modified Adomian decomposition method (MADM). The main ob...A mathematical model for the fluidized bed biofilm reactor (FBBR) is discussed. An approximate analytical solution of concentration of phenol is obtained using modified Adomian decomposition method (MADM). The main objective is to propose an analytical method of solution, which do not require small parameters and avoid linearization and physically unrealistic assumptions. Theoretical results obtained can be used to predict the biofilm density of a single bioparticle. Satisfactory agreement is obtained in the comparison of approximate analytical solution and numerical simulation.展开更多
The accurate measurement of parameters such as the cavity-loaded quality factor(Q_(L))and half bandwidth(f_(0.5))is essential for monitoring the performance of superconducting radio-frequency cavities.However,the conv...The accurate measurement of parameters such as the cavity-loaded quality factor(Q_(L))and half bandwidth(f_(0.5))is essential for monitoring the performance of superconducting radio-frequency cavities.However,the conventional"field decay method"employed to calibrate these values requires the cavity to satisfy a"zero-input"condition.This can be challenging when the source impedance is mismatched and produce nonzero forward signals(V_(f))that significantly affect the measurement accuracy.To address this limitation,we developed a modified version of the"field decay method"based on the cavity differential equation.The proposed approach enables the precise calibration of f_(0.5) even under mismatch conditions.We tested the proposed approach on the SRF cavities of the Chinese Accelerator-Driven System Front-End Demo Superconducting Linac and compared the results with those obtained from a network analyzer.The two sets of results were consistent,indicating the usefulness of the proposed approach.展开更多
基金The Major State Basic Research Development Program Grant (2005CB321701)the Heilongjiang Education Committee Grant (11551364) of China
文摘This paper is concerned with the inverse scattering problems for Schrdinger equations with compactly supported potentials.For purpose of reconstructing the support of the potential,we derive a factorization of the scattering amplitude operator A and prove that the ranges of (A* A) ^1/4 and G which maps more general incident fields than plane waves into the scattering amplitude coincide.As an application we characterize the support of the potential using only the spectral data of the operator A.
文摘The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.
文摘In this investigation a simple method developed by introducing spin to Schrodinger equation to study the relativistic hydrogen atom. By separating Schrodinger equation to radial and angular parts, we modify these parts to the associated Laguerre and Jacobi differential equations, respectively. Bound state Energy levels and wave functions of relativistic Schrodinger equation for Hydrogen atom have been obtained. Calculated results well matched to the results of Dirac’s relativistic theory. Finally the factorization method and supersymmetry approaches in quantum mechanics, give us some first order raising and lowering operators, which help us to obtain all quantum states and energy levels for different values of the quantum numbers n and m.
基金supported by the National Natural Science Foundation of China (No. 10872213)
文摘By using the concept of finite-part integral, a set of hypersingular integro-differential equations for multiple interracial cracks in a three-dimensional infinite bimaterial subjected to arbitrary loads is derived. In the numerical analysis, unknown displacement discontinuities are approximated with the products of the fundamental density functions and power series. The fundamental functions are chosen to express a two-dimensional interface crack rigorously. As illustrative examples, the stress intensity factors for two rectangular interface cracks are calculated for various spacing, crack shape and elastic constants. It is shown that the stress intensity factors decrease with the crack spacing.
文摘For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.
基金supported by the the National Science and Technology Council(Grant Number:NSTC 112-2221-E239-022).
文摘To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11).
文摘Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, and then,its numerical method is proposed by the numerical method of the singular integral equations combined with boundary element method. Moreover, the singular nature of temperature gradient field near the crack front is proved by the main-part analysis method of the singular integral equation, and the singular temperature gradients are exactly obtained. Finally, several typical examples calculated.
文摘This study was completed by an extensive mathematical analysis. New equation to sludge filtration processes has been proposed for use in routine laboratory. The equation has been suggested to replace Ademiluyi’s cake filtration equation in view of the limitations of the latter. The new equation can be used for sludges whose compressibility factor is more than one but Ademiluyi’s cake filtration equation can only be used for sludges whose compressibility coefficient is less than one. The new sludge filtration equation was derived using tannθ reduction method. The generalized equation thus obtained resembles Ademiluyi’s equation in the mode of parameter combination except the presence of summation notation in the new equation.
文摘The general approach for solving the nonlinear equations is linearizing the equations and forming various iterative procedures, then executing the numerical simulation. For the strongly nonlinear problems, the solution obtained in the iterative process is always difficult, even divergent due to the numerical instability. It can not fulfill the engineering requirements. Newton's method and its variants can not settle this problem. As a result, the application of numerical simulation for the strongly nonlinear problems is limited. An auto-adjustable damping method has been presented in this paper. This is a further improvement of Newton's method with damping factor. A set of vector of damping factor is introduced. This set of vector can be adjusted continuously during the iterative process in accordance with the judgement and adjustment. An effective convergence coefficient and quichening coefficient are employed to relax the restricted requirements for the initial values and to shorten the iterative process. Then, the numerical stability will be ensured for the solution of complicated strongly nonlinear equations. Using this method, some complicated strongly nonlinear heat transfer problems in airplanes and aeroengines have been numerically simulated successfully. It can be used for the numerical simulation of strongly nonlinear problems in engineering such as nonlinear hydrodynamics and aerodynamics, heat transfer and structural dynamic response etc.
文摘Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross_section is not thin_walled, but of small torsion rigidity is proposed. Some numerical examples are given.
文摘In this paper, the Klein-Gordon equation with equal scalar and vector Makaxov potentials is studied by the factorization method. The energy equation and the normalized bound state solutions are obtained, a recurrence relation between the different principal quantum number n corresponding to a certain angular quantum number l is established and some special cases of Makarov potential axe discussed.
基金supported by the Ministry of Education of China(No.208152)Gansu Natural Science Foundation(No.3ZS061-A52-47).
文摘Based on Zak's stress function, the eigen-equation of stress singularity ofbi-materials with a V-notch was obtained. A new definition of stress intensity factor for a perpendicular interfacial V-notch of bi-material was put forward. The effects of shear modulus and Poisson's ratio of the matrix material and attaching material on eigen-values were analyzed. A generalized expression for calculating/(i of the perpendicular V-notch of bi-materials was obtained by means of stress extrapolation. Effects of notch depth, notch angle and Poisson's ratio of materials on the singular stress field near the tip of the V-notch were analyzed systematically with numerical simulations. As an example, a finite plate with double edge notches under uniaxial uniform tension was calculated by the method presented and the influence of the notch angle and Poisson's ratio on the stress singularity near the tip of notch was obtained.
文摘Using the single crack solution and the regular solution elf plane harmonic function, the problem of Saint-Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross-section is not thin-walled, but of small torsion rigidity is proposed. Some numerical examples are given.
文摘Stress intensity factors for a three dimensional rectangular interfacial crack were considered using the body force method. In the numerical calculations, unknown body force densities were approximated by the products of the fundamental densities and power series; here the fundamental densities are chosen to express singular stress fields due to an interface crack exactly. The calculation shows that the numerical results are satisfied. The stress intensity factors for a rectangular interface crack were indicated accurately with the varying aspect ratio, and bimaterial parameter.
基金Project supported by the National Natural Sciences Foundation of China(Nos.59525813 and 19872066)the Cardiff Advanced Chinese Engineering Centre of Cardiff University.
文摘Based on the sub-region generalized variationM principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.
文摘A mathematical model for the fluidized bed biofilm reactor (FBBR) is discussed. An approximate analytical solution of concentration of phenol is obtained using modified Adomian decomposition method (MADM). The main objective is to propose an analytical method of solution, which do not require small parameters and avoid linearization and physically unrealistic assumptions. Theoretical results obtained can be used to predict the biofilm density of a single bioparticle. Satisfactory agreement is obtained in the comparison of approximate analytical solution and numerical simulation.
基金supported by the project of Large Research Infrastructures"China initiative Accelerator-Driven System"(No.2017-000052-75-01-000590)"Studies of intelligent LLRF control algorithms for superconducting RF cavities"(No.E129851YR0)the National Natural Science Foundation of China(No.12205344).
文摘The accurate measurement of parameters such as the cavity-loaded quality factor(Q_(L))and half bandwidth(f_(0.5))is essential for monitoring the performance of superconducting radio-frequency cavities.However,the conventional"field decay method"employed to calibrate these values requires the cavity to satisfy a"zero-input"condition.This can be challenging when the source impedance is mismatched and produce nonzero forward signals(V_(f))that significantly affect the measurement accuracy.To address this limitation,we developed a modified version of the"field decay method"based on the cavity differential equation.The proposed approach enables the precise calibration of f_(0.5) even under mismatch conditions.We tested the proposed approach on the SRF cavities of the Chinese Accelerator-Driven System Front-End Demo Superconducting Linac and compared the results with those obtained from a network analyzer.The two sets of results were consistent,indicating the usefulness of the proposed approach.