The key technology and main difficulty for optical fiber intrusion pre-warning systems (OFIPS) is the extraction of harmful-intrusion signals. After being processed by a phase-sensitive optical time-domain reflectom...The key technology and main difficulty for optical fiber intrusion pre-warning systems (OFIPS) is the extraction of harmful-intrusion signals. After being processed by a phase-sensitive optical time-domain reflectometer (O-0TDR), vibration signals can be preliminarily extracted. Generally, these include noises and intrusions. Here, intrusions can be divided into harmful and harmless intrusions. With respect to the close study of signal characteristics, an effective extraction method of harmful intrusion is proposed in the paper. Firstly, in the part of the background reconstruction, all intrusion signals are first detected by a constant false alarm rate (CFAR). We then reconstruct the backgrounds by extracting two-part information of alarm points, time and amplitude. This ensures that the detection background consists of intrusion signals. Secondly, in the part of the two-dimensional Kolmogorov-Smirnov (K-S) test, in order to extract harmful ones from all extracted intrusions, we design a separation method. It is based on the signal characteristics of harmful intrusion, which are shorter time interval and higher amplitude. In the actual OFIPS, the detection method is used in some typical scenes, which includes a lot of harmless intrusions, for example construction sites and busy roads. Results show that we can effectively extract harmful intrusions.展开更多
针对多输入单输出(MISO,multiple input single output)通信系统的STBC-OFDM信号盲识别问题,提出基于OFDM块的改进Kolmogorov-Smirnov(K-S)检测方法。该方法首先对MISO通信系统的STBC-OFDM信号建模;然后利用STBC-OFDM信号编码矩阵的相关...针对多输入单输出(MISO,multiple input single output)通信系统的STBC-OFDM信号盲识别问题,提出基于OFDM块的改进Kolmogorov-Smirnov(K-S)检测方法。该方法首先对MISO通信系统的STBC-OFDM信号建模;然后利用STBC-OFDM信号编码矩阵的相关性,构造不同时延向量下STBC-OFDM接收信号OFDM块的经验函数作为特征函数;最后通过改进K-S检测方法检验经验分布函数之间的距离盲识别STBC-OFDM信号。该方法不需要噪声信息、调制信息和信道系数,适合非合作通信场合。理论分析和实验验证了该方法的可行性。展开更多
网络借贷作为一种新型互联网金融模式,提升了金融资源使用效率,缓解了小企业融资难的困局。构建合理的网络借贷信用评价指标体系,从而对网络借贷的潜在风险及时甄别与预防,对互联网金融健康持续发展意义重大。本文根据K-S检验与距离相...网络借贷作为一种新型互联网金融模式,提升了金融资源使用效率,缓解了小企业融资难的困局。构建合理的网络借贷信用评价指标体系,从而对网络借贷的潜在风险及时甄别与预防,对互联网金融健康持续发展意义重大。本文根据K-S检验与距离相关分析相结合,筛选对借款客户违约状态甄别能力强的指标,建立了网络借贷信用评价指标体系,通过P2P网络借贷(peer to peer lending,个人对个人借贷)平台LendingClub交易数据进行实证研究,结果表明:不仅借款金额、借款利率等借款标的特征对借贷者违约具有显著相关性,借款者年龄等个人特征、借款者年收入等财务特征以及借款者违约次数等信用特征均对借贷者违约风险产生显著影响。投资者在出借资金时,往往青睐于已婚、年龄适中、具有一定工作经历、历史违约次数较少的借款人。因此,风险监管部门应构建网络借贷违约风险评估模型,对P2P平台进行风险监测,同时建立关键信息共享机制,融合多源数据,明确审查范围,实现P2P网络借贷行业健康有序发展。展开更多
文摘The key technology and main difficulty for optical fiber intrusion pre-warning systems (OFIPS) is the extraction of harmful-intrusion signals. After being processed by a phase-sensitive optical time-domain reflectometer (O-0TDR), vibration signals can be preliminarily extracted. Generally, these include noises and intrusions. Here, intrusions can be divided into harmful and harmless intrusions. With respect to the close study of signal characteristics, an effective extraction method of harmful intrusion is proposed in the paper. Firstly, in the part of the background reconstruction, all intrusion signals are first detected by a constant false alarm rate (CFAR). We then reconstruct the backgrounds by extracting two-part information of alarm points, time and amplitude. This ensures that the detection background consists of intrusion signals. Secondly, in the part of the two-dimensional Kolmogorov-Smirnov (K-S) test, in order to extract harmful ones from all extracted intrusions, we design a separation method. It is based on the signal characteristics of harmful intrusion, which are shorter time interval and higher amplitude. In the actual OFIPS, the detection method is used in some typical scenes, which includes a lot of harmless intrusions, for example construction sites and busy roads. Results show that we can effectively extract harmful intrusions.
文摘针对多输入单输出(MISO,multiple input single output)通信系统的STBC-OFDM信号盲识别问题,提出基于OFDM块的改进Kolmogorov-Smirnov(K-S)检测方法。该方法首先对MISO通信系统的STBC-OFDM信号建模;然后利用STBC-OFDM信号编码矩阵的相关性,构造不同时延向量下STBC-OFDM接收信号OFDM块的经验函数作为特征函数;最后通过改进K-S检测方法检验经验分布函数之间的距离盲识别STBC-OFDM信号。该方法不需要噪声信息、调制信息和信道系数,适合非合作通信场合。理论分析和实验验证了该方法的可行性。
文摘网络借贷作为一种新型互联网金融模式,提升了金融资源使用效率,缓解了小企业融资难的困局。构建合理的网络借贷信用评价指标体系,从而对网络借贷的潜在风险及时甄别与预防,对互联网金融健康持续发展意义重大。本文根据K-S检验与距离相关分析相结合,筛选对借款客户违约状态甄别能力强的指标,建立了网络借贷信用评价指标体系,通过P2P网络借贷(peer to peer lending,个人对个人借贷)平台LendingClub交易数据进行实证研究,结果表明:不仅借款金额、借款利率等借款标的特征对借贷者违约具有显著相关性,借款者年龄等个人特征、借款者年收入等财务特征以及借款者违约次数等信用特征均对借贷者违约风险产生显著影响。投资者在出借资金时,往往青睐于已婚、年龄适中、具有一定工作经历、历史违约次数较少的借款人。因此,风险监管部门应构建网络借贷违约风险评估模型,对P2P平台进行风险监测,同时建立关键信息共享机制,融合多源数据,明确审查范围,实现P2P网络借贷行业健康有序发展。