The k-Nearest Neighbor method is one of the most popular techniques for both classification and regression purposes.Because of its operation,the application of this classification may be limited to problems with a cer...The k-Nearest Neighbor method is one of the most popular techniques for both classification and regression purposes.Because of its operation,the application of this classification may be limited to problems with a certain number of instances,particularly,when run time is a consideration.However,the classification of large amounts of data has become a fundamental task in many real-world applications.It is logical to scale the k-Nearest Neighbor method to large scale datasets.This paper proposes a new k-Nearest Neighbor classification method(KNN-CCL)which uses a parallel centroid-based and hierarchical clustering algorithm to separate the sample of training dataset into multiple parts.The introduced clustering algorithm uses four stages of successive refinements and generates high quality clusters.The k-Nearest Neighbor approach subsequently makes use of them to predict the test datasets.Finally,sets of experiments are conducted on the UCI datasets.The experimental results confirm that the proposed k-Nearest Neighbor classification method performs well with regard to classification accuracy and performance.展开更多
Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional...Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional datadue to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset andcompute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similaritymatrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a votefor the point with the highest density among its KNN. By utilizing the vote counts of each point, we develop thestrategy for classifying noise points and potential cluster centers, allowing the algorithm to identify clusters withuneven density and complex shapes. Additionally, we define the concept of “adhesive points” between two clustersto merge adjacent clusters that have similar densities. This process helps us identify the optimal number of clustersautomatically. Experimental results indicate that our algorithm not only improves the efficiency of clustering butalso increases its accuracy.展开更多
During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and...During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface.展开更多
Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to i...Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM.展开更多
Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically ...Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically modeling the actual scene, so that the hand-held full-band spectrum analyzer would be able to collect signal field strength values for indoor complex scenes. An improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression was proposed to predict the signal field strengths for the whole plane before and after being shield. Then the highest accuracy set of data could be picked out by comparison. The experimental results show that the improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression can scientifically and objectively predict the indoor complex scenes’ signal strength and evaluate the interference protection with high accuracy.展开更多
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec...In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.展开更多
Interference signals recognition plays an important role in anti-jamming communication.With the development of deep learning,many supervised interference signals recognition algorithms based on deep learning have emer...Interference signals recognition plays an important role in anti-jamming communication.With the development of deep learning,many supervised interference signals recognition algorithms based on deep learning have emerged recently and show better performance than traditional recognition algorithms.However,there is no unsupervised interference signals recognition algorithm at present.In this paper,an unsupervised interference signals recognition method called double phases and double dimensions contrastive clustering(DDCC)is proposed.Specifically,in the first phase,four data augmentation strategies for interference signals are used in data-augmentation-based(DA-based)contrastive learning.In the second phase,the original dataset’s k-nearest neighbor set(KNNset)is designed in double dimensions contrastive learning.In addition,a dynamic entropy parameter strategy is proposed.The simulation experiments of 9 types of interference signals show that random cropping is the best one of the four data augmentation strategies;the feature dimensional contrastive learning in the second phase can improve the clustering purity;the dynamic entropy parameter strategy can improve the stability of DDCC effectively.The unsupervised interference signals recognition results of DDCC and five other deep clustering algorithms show that the clustering performance of DDCC is superior to other algorithms.In particular,the clustering purity of our method is above 92%,SCAN’s is 81%,and the other three methods’are below 71%when jammingnoise-ratio(JNR)is−5 dB.In addition,our method is close to the supervised learning algorithm.展开更多
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode...Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.展开更多
In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used t...In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP.展开更多
Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in term...Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in terms of simple calculation and high computational accuracy,but its convergence speed is slow and it is easy to fall into the local optimal solution.In order to overcome the shortcomings,this paper integrates adaptive neighborhood and hybrid mutation strategies into whale optimization algorithms,designs the average distance from itself to other whales as an adaptive neighborhood radius,and chooses to learn from the optimal solution in the neighborhood instead of random learning strategies.The hybrid mutation strategy is used to enhance the ability of algorithm to jump out of the local optimal solution.A new whale optimization algorithm(HMNWOA)is proposed.The proposed algorithm inherits the global search capability of the original algorithm,enhances the exploitation ability,improves the quality of the population,and thus improves the convergence speed of the algorithm.A feature selection algorithm based on binary HMNWOA is proposed.Twelve standard datasets from UCI repository test the validity of the proposed algorithm for feature selection.The experimental results show that HMNWOA is very competitive compared to the other six popular feature selection methods in improving the classification accuracy and reducing the number of features,and ensures that HMNWOA has strong search ability in the search feature space.展开更多
The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effectiv...The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effective algorithm to estimate the finite mixture model parameters. However, EM algorithm can not guarantee to find the global optimal solution, and often easy to fall into local optimal solution, so it is sensitive to the determination of initial value to iteration. Traditional EM algorithm select the initial value at random, we propose an improved method of selection of initial value. First, we use the k-nearest-neighbor method to delete outliers. Second, use the k-means to initialize the EM algorithm. Compare this method with the original random initial value method, numerical experiments show that the parameter estimation effect of the initialization of the EM algorithm is significantly better than the effect of the original EM algorithm.展开更多
在处理雷达信号时,基于密度的空间聚类(Density-based spatial clustering of applications with noise,DBSCAN)分选算法依赖于参数或阈值的选取,影响分选的准确率。为此提出了一种改进的雷达信号脉冲分选算法,在DBSCAN聚类基础上结合了...在处理雷达信号时,基于密度的空间聚类(Density-based spatial clustering of applications with noise,DBSCAN)分选算法依赖于参数或阈值的选取,影响分选的准确率。为此提出了一种改进的雷达信号脉冲分选算法,在DBSCAN聚类基础上结合了K中位最近邻(K-median nearest neighbor,KMNN)算法,通过引入自衰减系数并设置阈值上限对参数值列表进行二次处理,可以自适应根据聚类结果与不同参数时的K值之间的关系确定最优的邻域半径和最少点个数,提高了分选的正确率。通过仿真实验验证了算法利用雷达脉冲描述字特征进行自适应分选的有效性。展开更多
基金The authors received no specific funding for this work.
文摘The k-Nearest Neighbor method is one of the most popular techniques for both classification and regression purposes.Because of its operation,the application of this classification may be limited to problems with a certain number of instances,particularly,when run time is a consideration.However,the classification of large amounts of data has become a fundamental task in many real-world applications.It is logical to scale the k-Nearest Neighbor method to large scale datasets.This paper proposes a new k-Nearest Neighbor classification method(KNN-CCL)which uses a parallel centroid-based and hierarchical clustering algorithm to separate the sample of training dataset into multiple parts.The introduced clustering algorithm uses four stages of successive refinements and generates high quality clusters.The k-Nearest Neighbor approach subsequently makes use of them to predict the test datasets.Finally,sets of experiments are conducted on the UCI datasets.The experimental results confirm that the proposed k-Nearest Neighbor classification method performs well with regard to classification accuracy and performance.
基金National Natural Science Foundation of China Nos.61962054 and 62372353.
文摘Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional datadue to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset andcompute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similaritymatrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a votefor the point with the highest density among its KNN. By utilizing the vote counts of each point, we develop thestrategy for classifying noise points and potential cluster centers, allowing the algorithm to identify clusters withuneven density and complex shapes. Additionally, we define the concept of “adhesive points” between two clustersto merge adjacent clusters that have similar densities. This process helps us identify the optimal number of clustersautomatically. Experimental results indicate that our algorithm not only improves the efficiency of clustering butalso increases its accuracy.
基金supported by the Innovative Research Groups of National Natural Science Foundation of China(No. 51621092)National Basic Research Program of China ("973" Program, No. 2013CB035904)National Natural Science Foundation of China (No. 51439005)
文摘During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface.
文摘Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM.
基金the National Natural Science Foundation of China under projects 61772150 and 61862012the Guangxi Key R&D Program under project AB17195025+5 种基金the Guangxi Natural Science Foundation under grants 2018GXNSFDA281054 and 2018GXNSFAA281232the National Cryptography Development Fund of China under project MMJJ20170217the Guangxi Science and Technology Base and Special Talents Program AD18281044the Innovation Project of GUET Graduate Education under project 2017YJCX46the Guangxi Young Teachers’ Basic Ability Improvement Program under Grant 2018KY0194the open program of Guangxi Key Laboratory of Cryptography and Information Security under projects GCIS201621 and GCIS201702.
文摘Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically modeling the actual scene, so that the hand-held full-band spectrum analyzer would be able to collect signal field strength values for indoor complex scenes. An improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression was proposed to predict the signal field strengths for the whole plane before and after being shield. Then the highest accuracy set of data could be picked out by comparison. The experimental results show that the improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression can scientifically and objectively predict the indoor complex scenes’ signal strength and evaluate the interference protection with high accuracy.
基金the Deputyship for Research and Innovation,“Ministry of Education”in Saudi Arabia for funding this research(IFKSUOR3-014-3).
文摘In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.
基金This research was supported by the National Natural Science Foundation of China under Grant No.U19B2016.,and Zhejiang Provincial Key Lab of Data Storage and Transmission Technology,Hangzhou Dianzi University.
文摘Interference signals recognition plays an important role in anti-jamming communication.With the development of deep learning,many supervised interference signals recognition algorithms based on deep learning have emerged recently and show better performance than traditional recognition algorithms.However,there is no unsupervised interference signals recognition algorithm at present.In this paper,an unsupervised interference signals recognition method called double phases and double dimensions contrastive clustering(DDCC)is proposed.Specifically,in the first phase,four data augmentation strategies for interference signals are used in data-augmentation-based(DA-based)contrastive learning.In the second phase,the original dataset’s k-nearest neighbor set(KNNset)is designed in double dimensions contrastive learning.In addition,a dynamic entropy parameter strategy is proposed.The simulation experiments of 9 types of interference signals show that random cropping is the best one of the four data augmentation strategies;the feature dimensional contrastive learning in the second phase can improve the clustering purity;the dynamic entropy parameter strategy can improve the stability of DDCC effectively.The unsupervised interference signals recognition results of DDCC and five other deep clustering algorithms show that the clustering performance of DDCC is superior to other algorithms.In particular,the clustering purity of our method is above 92%,SCAN’s is 81%,and the other three methods’are below 71%when jammingnoise-ratio(JNR)is−5 dB.In addition,our method is close to the supervised learning algorithm.
文摘Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.
基金supported by the National Science Fund for Distinguished Young Scholars of China(61525304)the National Natural Science Foundation of China(61873328)
文摘In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP.
基金This work was supported by the National Natural Science Foundation of China(Grant No.2017YFC0403605 and No.11601419).
文摘Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in terms of simple calculation and high computational accuracy,but its convergence speed is slow and it is easy to fall into the local optimal solution.In order to overcome the shortcomings,this paper integrates adaptive neighborhood and hybrid mutation strategies into whale optimization algorithms,designs the average distance from itself to other whales as an adaptive neighborhood radius,and chooses to learn from the optimal solution in the neighborhood instead of random learning strategies.The hybrid mutation strategy is used to enhance the ability of algorithm to jump out of the local optimal solution.A new whale optimization algorithm(HMNWOA)is proposed.The proposed algorithm inherits the global search capability of the original algorithm,enhances the exploitation ability,improves the quality of the population,and thus improves the convergence speed of the algorithm.A feature selection algorithm based on binary HMNWOA is proposed.Twelve standard datasets from UCI repository test the validity of the proposed algorithm for feature selection.The experimental results show that HMNWOA is very competitive compared to the other six popular feature selection methods in improving the classification accuracy and reducing the number of features,and ensures that HMNWOA has strong search ability in the search feature space.
文摘The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effective algorithm to estimate the finite mixture model parameters. However, EM algorithm can not guarantee to find the global optimal solution, and often easy to fall into local optimal solution, so it is sensitive to the determination of initial value to iteration. Traditional EM algorithm select the initial value at random, we propose an improved method of selection of initial value. First, we use the k-nearest-neighbor method to delete outliers. Second, use the k-means to initialize the EM algorithm. Compare this method with the original random initial value method, numerical experiments show that the parameter estimation effect of the initialization of the EM algorithm is significantly better than the effect of the original EM algorithm.
文摘在处理雷达信号时,基于密度的空间聚类(Density-based spatial clustering of applications with noise,DBSCAN)分选算法依赖于参数或阈值的选取,影响分选的准确率。为此提出了一种改进的雷达信号脉冲分选算法,在DBSCAN聚类基础上结合了K中位最近邻(K-median nearest neighbor,KMNN)算法,通过引入自衰减系数并设置阈值上限对参数值列表进行二次处理,可以自适应根据聚类结果与不同参数时的K值之间的关系确定最优的邻域半径和最少点个数,提高了分选的正确率。通过仿真实验验证了算法利用雷达脉冲描述字特征进行自适应分选的有效性。