This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a rand...This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a random input point can be postulated through a classifier implemented through the modified K-nearest neighbors algorithm.Compared to other active learning methods resorting to experimental designs,the proposed method is characterized by employing Monte-Carlo simulation for sampling inputs and saving a large portion of the actual evaluations of outputs through an accurate classification,which is applicable for most structural reliability estimation problems.Moreover,the validity,efficiency,and accuracy of the proposed method are demonstrated numerically.In addition,the optimal value of K that maximizes the computational efficiency is studied.Finally,the proposed method is applied to the reliability estimation of the carbon fiber reinforced silicon carbide composite specimens subjected to random displacements,which further validates its practicability.展开更多
A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways,...A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways, a specically designed database was developed via the processes including data filtering, wavelet analysis and clustering. The relativity based weighted Euclidean distance was used as the distance metric to identify the K groups of nearest data series. Then, a K-NN nonparametric regression model was built to predict the average travel speeds up to 6 min into the future. Several randomly selected travel speed data series, collected from the floating car data (FCD) system, were used to validate the model. The results indicate that using the FCD, the model can predict average travel speeds with an accuracy of above 90%, and hence is feasible and effective.展开更多
To overcome the limitations of the traditional stage-discharge models in describing the dynamic characteristics of a river, a machine learning method of non-parametric regression, the locally weighted regression metho...To overcome the limitations of the traditional stage-discharge models in describing the dynamic characteristics of a river, a machine learning method of non-parametric regression, the locally weighted regression method was used to estimate discharge. With the purpose of improving the precision and efficiency of river discharge estimation, a novel machine learning method is proposed: the clustering-tree weighted regression method. First, the training instances are clustered. Second, the k-nearest neighbor method is used to cluster new stage samples into the best-fit cluster. Finally, the daily discharge is estimated. In the estimation process, the interference of irrelevant information can be avoided, so that the precision and efficiency of daily discharge estimation are improved. Observed data from the Luding Hydrological Station were used for testing. The simulation results demonstrate that the precision of this method is high. This provides a new effective method for discharge estimation.展开更多
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode...Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12002246 and No.52178301)Knowledge Innovation Program of Wuhan(Grant No.2022010801020357)+2 种基金the Science Research Foundation of Wuhan Institute of Technology(Grant No.K2021030)2020 annual Open Fund of Failure Mechanics&Engineering Disaster Prevention and Mitigation,Key Laboratory of Sichuan Province(Sichuan University)(Grant No.2020JDS0022)Open Research Fund Program of Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety(Grant No.2019KA03)。
文摘This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a random input point can be postulated through a classifier implemented through the modified K-nearest neighbors algorithm.Compared to other active learning methods resorting to experimental designs,the proposed method is characterized by employing Monte-Carlo simulation for sampling inputs and saving a large portion of the actual evaluations of outputs through an accurate classification,which is applicable for most structural reliability estimation problems.Moreover,the validity,efficiency,and accuracy of the proposed method are demonstrated numerically.In addition,the optimal value of K that maximizes the computational efficiency is studied.Finally,the proposed method is applied to the reliability estimation of the carbon fiber reinforced silicon carbide composite specimens subjected to random displacements,which further validates its practicability.
基金The Project of Research on Technologyand Devices for Traffic Guidance (Vehicle Navigation)System of Beijing Municipal Commission of Science and Technology(No H030630340320)the Project of Research on theIntelligence Traffic Information Platform of Beijing Education Committee
文摘A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways, a specically designed database was developed via the processes including data filtering, wavelet analysis and clustering. The relativity based weighted Euclidean distance was used as the distance metric to identify the K groups of nearest data series. Then, a K-NN nonparametric regression model was built to predict the average travel speeds up to 6 min into the future. Several randomly selected travel speed data series, collected from the floating car data (FCD) system, were used to validate the model. The results indicate that using the FCD, the model can predict average travel speeds with an accuracy of above 90%, and hence is feasible and effective.
基金supported by the Key Fund Project of the Sichuan Provincial Department of Education (Grant No. 11ZA009)the Fund Project of Sichuan Provincial Key Laboratory of Fluid Machinery (Grant No.SBZDPY-11-5)the Key Scientific Research Project of Xihua University (Grant No. Z1120413)
文摘To overcome the limitations of the traditional stage-discharge models in describing the dynamic characteristics of a river, a machine learning method of non-parametric regression, the locally weighted regression method was used to estimate discharge. With the purpose of improving the precision and efficiency of river discharge estimation, a novel machine learning method is proposed: the clustering-tree weighted regression method. First, the training instances are clustered. Second, the k-nearest neighbor method is used to cluster new stage samples into the best-fit cluster. Finally, the daily discharge is estimated. In the estimation process, the interference of irrelevant information can be avoided, so that the precision and efficiency of daily discharge estimation are improved. Observed data from the Luding Hydrological Station were used for testing. The simulation results demonstrate that the precision of this method is high. This provides a new effective method for discharge estimation.
文摘Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.