Lithology of Triassic in southwestern Sichuan is consistent with the whole basin,and there is no discussion about stratum division,the difference is stratum denudation which is made by the uplifting of Luzhou uplift,e...Lithology of Triassic in southwestern Sichuan is consistent with the whole basin,and there is no discussion about stratum division,the difference is stratum denudation which is made by the uplifting of Luzhou uplift,especially展开更多
Lop Nur is located at the eastmost end of the Tarim Basin in Xinjiang,Northwestern China.This study reviews the hydrochemical characteristics and evolution of underground brine in Lop Nur,based on analytical data from...Lop Nur is located at the eastmost end of the Tarim Basin in Xinjiang,Northwestern China.This study reviews the hydrochemical characteristics and evolution of underground brine in Lop Nur,based on analytical data from 429 water samples(mainly brine).It is found that in the NE-SW direction,from the periphery to the Luobei sub-depression,while the hydrochemical type varies from the sodium sulfate subtype(S)to the magnesium sulfate subtype(M),the corresponding brine in the phase diagram transfers from the thenardite phase(Then)area,through the bloedite phase(Blo),epsomite phase(Eps),picromerite phase(Picro),finally reaching the sylvite phase(Syl)area.As for the degree of evolution,the sequence is the periphery<Luobei horizontally and the overlying glauberite brine<the underlying clastic brine vertically.It is concluded that the oxygen and hydrogen isotopic compositions of the brine have evidently been affected through the effects of evaporation and altitude,as well as the changes in local water circulation in recent years.Boron and chloride isotopic compositions show that the glauberite brine is formed under more arid conditions than the clastic one.The strontium isotopic composition indicates that the Lop Nur brine primarily originates from surface water;however,deep recharge may also be involved in the evolution of the brine,according to previous noble gas studies.It is confirmed that the brine in Lop Nur has become enriched with potassium prior to halite precipitation over the full course of the salt lake's evolution.Based on chemical compositions of brine from drillhole LDK01 and previous lithological studies,the evolution of the salt lake can be divided into three stages and it is inferred that the brine in Lop Nur may have undergone at least two significant concentration-dilution periods.展开更多
High-density brines have been recognized beneficial for oilfield applications,with various key areas such as drilling,completion and formation evaluation.High-density brines can play a critical role in the development...High-density brines have been recognized beneficial for oilfield applications,with various key areas such as drilling,completion and formation evaluation.High-density brines can play a critical role in the development and production of oil and gas reservoirs during the primary,secondary,and tertiary recovery phases.High-density brines can enhance the mobility and recovery of the oil in the reservoir by controlling the density and viscosity.However,a less attention has been given to the application of high-density brine in the area of reservoir development.This review is shedding light on a concise overview of reservoir development stages in association with the recovery mechanisms.In addition,most possible applications of high-density fluids have also been reviewed in the field of the reservoir development.In summary,this review state that high-density brines can be used to stimulate reservoirs by hydraulic fracturing during the primary recovery phase.However,the risk of increased interfacial tension,which relies on the density difference of two fluids,can trap more residual oil relative to conventional water flooding.In addition,high-density brines are effective in decreasing the mobility ratio and facilitating favorable displacement during polymer flooding.However,they can be least effective in alkaline flooding due to the high IFT related to large density differences.Thus,it is suggested to consider the utilization of sustainable high-density brines by taking into account effective factors in petroleum engineering aspects such as stimulation,secondary recovery and polymer flooding.展开更多
Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines gi...Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines give rise to challenges,such as prolonged lithium extraction periods,diminished lithium extraction efficiency,and considerable environmental pollution.In this work,Li FePO4(LFP)served as the electrode material for electrochemical lithium extraction.The conductive network in the LFP electrode was optimized by adjusting the type of conductive agent.This approach resulted in high lithium extraction efficiency and extended cycle life.When the single conductive agent of acetylene black(AB)or multiwalled carbon nanotubes(MWCNTs)was replaced with the mixed conductive agent of AB/MWCNTs,the average diffusion coefficient of Li+in the electrode increased from 2.35×10^(-9)or 1.77×10^(-9)to 4.21×10^(-9)cm^(2)·s^(-1).At the current density of 20 mA·g^(-1),the average lithium extraction capacity per gram of LFP electrode increased from 30.36 mg with the single conductive agent(AB)to 35.62 mg with the mixed conductive agent(AB/MWCNTs).When the mixed conductive agent was used,the capacity retention of the electrode after 30 cycles reached 82.9%,which was considerably higher than the capacity retention of 65.8%obtained when the single AB was utilized.Meanwhile,the electrode with mixed conductive agent of AB/MWCNTs provided good cycling performance.When the conductive agent content decreased or the loading capacity increased,the electrode containing the mixed conductive agent continued to show excellent electrochemical performance.Furthermore,a self-designed,highly efficient,continuous lithium extraction device was constructed.The electrode utilizing the AB/MWCNT mixed conductive agent maintained excellent adsorption capacity and cycling performance in this device.This work provides a new perspective for the electrochemical extraction of lithium using LFP electrodes.展开更多
The residues of salt lake brine from which potassium had been removed were used to extract Rb+ and Cs+ together with a sulphonated kerosene(SK) solution of 1.0 mol/L 4-tert-butyl-2-(α-methylbenzyl) phenol(t-BA...The residues of salt lake brine from which potassium had been removed were used to extract Rb+ and Cs+ together with a sulphonated kerosene(SK) solution of 1.0 mol/L 4-tert-butyl-2-(α-methylbenzyl) phenol(t-BAMBP). Rb+ and Cs+ were enriched and separated effectively by precipitating Mg2+ before extraction and by scrubbing out K+ and Na+ repeatedly before stripping. The effects of the volume ratio of organic phase to aqueous extraction phase(O/A), alkalinity of aqueous phase(c(OH)-), interference from K+ and Mg2+, and ratio the volume of organic phase to aqueous scrubbing phase(O/A′) were investigated. The experimental brine was extracted optimally by 5-stage extraction with 1.0 mol/L t-BAMBP in SK, c(OH-)=1 mol/L, and O/A=1:1. The scrubbing yield of rubidium was only about 10.5% when the extraction solvent was washed 3 times with 1×10-4 mol/L Na OH at O/A′=1:0.5. After 5-stage countercurrent extraction, the final extraction yields of Rb+ and Cs+ reached 95.04% and 99.80%, respectively.展开更多
Salt lake brine was reacted with activated aluminum-based alloys and lithium was precipitated.The effects of aluminum-based alloys on precipitating lithium were investigated and the reasonable alloy used to extract li...Salt lake brine was reacted with activated aluminum-based alloys and lithium was precipitated.The effects of aluminum-based alloys on precipitating lithium were investigated and the reasonable alloy used to extract lithium from brine was obtained.The effects of the mole ratio of Al to Li and Ca content of Al-Ca alloy,the initial concentration of lithiumion ion in solution,reaction temperature and reaction time on the adsorption rate of lithium were studied,and the optimized process parameters were determined.The results show that the mole ratio of Al to Li and Ca content of Al-Ca alloy and reaction temperature have great influences on the precipitation rate of lithium.The precipitation rate of lithium reaches 94.6% under the optimal condition,indicating that Al-Ca alloy is suitable for the extraction of lithium from salt lake brine.展开更多
[Objective] This study aimed to screen an Na+/H+ antiporter gene from the halophiles colonizing in the Dagong Ancient Brine Well in Zigong City, China, and then analyze the gene structure and properties of the prote...[Objective] This study aimed to screen an Na+/H+ antiporter gene from the halophiles colonizing in the Dagong Ancient Brine Well in Zigong City, China, and then analyze the gene structure and properties of the protein encoded by this gene. [Method] Metagenomic DNA libraries of halophiles from the Dagong Ancient Brine Well were used for screening genes with Na+/H+ antiporter activity in antiporter-defi- cient E. coil KNabc strain by functional complementation. Then the start codon, stop codon, ORF, -35 region, -10 region and SD sequence of Na~/H+ antiporter gene, as well as the molecular weight, isoelectric point, hydrophobic region, transmembrane domain, phyletic evolution and salt resistance of protein encoded by the gene were investigated. [Result] A new Na+/H+ antiporter gene m-nha was obtained, which ,ren- dered the antiporter-negative mutant E. coil KNabc cells with both the resistance to Na+ and the ability to grow under alkaline conditions. [Conclusion] The structure and amino acid sequence of M-Nha was different from the previously reported Na+/H~ antiporters, and the m-nha gene disclosed from the Dagong Ancient Brine Well was identified as a novel Na+/H+ antiporter gene. This study was significant not only in helping us understand the salt tolerance of halophiles in ancient brine wells and develop and utilize the genes resource, but also in exploring new salt-tolerant genes.展开更多
[ Objective ] The paper was to study the effect of sea brine on the growth of Fusarium graminearum. [ Method] The inhibition rate of sea brine against F. gram/nearum was measured using mycelial growth rate method. The...[ Objective ] The paper was to study the effect of sea brine on the growth of Fusarium graminearum. [ Method] The inhibition rate of sea brine against F. gram/nearum was measured using mycelial growth rate method. The inhibition effect of sea brine against infection of F. gram/nearum on maize was measured through leaf culture method in vitro. [Result] With the decrease of sea brine concentration, its inhibition against F. gram/nearum had no remarkable regulation, which first decreased, then increased, and finally decreased. It had the best inhibition effect as the concentration was 0.005 0% with the inhibition rate of 31.2%. 0.050 0% sea brine had the best inhibition effect against the infection of F. graminearum with the inhibition rate of 44.3%. [ Conclusion] The results provided theoretical basis for the application of sea brine in the aspects of plant diseases and vests control展开更多
The extraction of lithium from salt lake brine in the Chinese Qaidam Basin is challenging due to its high Mg/Li and Na/Li ratios. Herein, we utilized a reaction-coupled separation technology to separate sodium and lit...The extraction of lithium from salt lake brine in the Chinese Qaidam Basin is challenging due to its high Mg/Li and Na/Li ratios. Herein, we utilized a reaction-coupled separation technology to separate sodium and lithium ions from a high Na/Li ratio brine(Na/Li = 48.7, w/w) and extracted lithium with Li Al-layered double hydroxides(Li Al-LDHs). The Li Al-LDHs act as lithium-ion-selective capturing materials from multication brines. That is, the lithium ions selectively enter the solid phase to form Li Al-LDHs, and the sodium ions are still retained in the liquid phase. This is because the lithium ions can be incorporated into the structural vacancies of LiAl-LDHs, whereas the sodium ions cannot. The effects of reaction conditions on lithium loss and separation efficiency were investigated at both the nucleation and the crystallization stage, e.g., the nucleation rotating speed, the Li/Al molar ratio, the crystallization temperature and time, and co-existing cations. The lithium loss is as low as 3.93% under optimal separation conditions.The sodium ions remained in the solution. Consequently, an excellent Na/Li separation efficiency was achieved by this reaction-coupled separation technology. These findings confirm that LiAl-LDHs play a critical function in selectively capturing lithium ions from brines with a high Na/Li ratio, which is useful for the extraction of lithium ions from the abundant salt lake brine resources in China.展开更多
Objective:To investigate the antibacterial and cytotoxic activity of fourteen different edible vegetables methanolic extract from Bangladesh.Methods:The antibacterial activity was evaluated using disc diffusion assay ...Objective:To investigate the antibacterial and cytotoxic activity of fourteen different edible vegetables methanolic extract from Bangladesh.Methods:The antibacterial activity was evaluated using disc diffusion assay method against 12 bacteria(both gram positive and gram negative).The plant extracts were also screened for cytotoxic activity using the brine shrimp lethality bioassay method and the lethal concentrations(LC_(50))were determined at confidence intervals by analyzing the data on a computer loaded with"Finney Programme??Results:All the vegetable extracts showed low to elevated levels of antibacterial activity against most of the tested strains(zone of inhibition=5-28 mm).The most active extract against all bacterial strains was from Xanthium indicum which showed remarkable antibacterial activity having the diameter of growth inhibition zone ranging from 12 to 28 mm followed by Alternanthera sessilis(zone of inhibition=6-21 mm).All extracts exhibited considerable general toxicity towards brine shrimps.The LC_(50)value of the tested extracts was within the range of 8.447 to 60.323μg/mL with respect to the positive control(vincristine sulphate)which was 0.91μg/mL.Among all studied extracts,Xanthium indicum displayed the highest cytotoxic effect with LC_(50)value of 8.447μg/mL.Conclusions:The results of the present investigation suggest that most of the studied plants are potentially good source of antibacterial and anticancer agents.展开更多
The Mengyejing potash deposit is located in the southern port of the Simao Basin, Yunnan Province, and is hosted in mid-Cretaceous strata. The chemical compositions of fluid inclusions in halite crystals, collected fr...The Mengyejing potash deposit is located in the southern port of the Simao Basin, Yunnan Province, and is hosted in mid-Cretaceous strata. The chemical compositions of fluid inclusions in halite crystals, collected from the level-610 adit in the deposit, were analysed by laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS). The results show that the brine is of the Na-K-Mg-Ca-Cl type and has K concentrations that are distinctly higher than those of Mg and Ca, unlike normal brines associated with Cretaceous halite. The high K concentrations indicate that the degree of evaporation of the ancient Mengyejing saline lake was very high, reaching the sylvite deposition stage but rarely reaching the carnallite deposition stage. The trajectory of the H and O isotopic compositions of the brines in the halite-hosted fluid inclusions corresponds to intense evaporation, indicating that the net evaporation exceeded the net inflow of brines. These brine compositions in halite-hosted fluid inclusions were likely formed by the dissolution of previously deposited K-bearing minerals by fresh continental and/or seawater, forming a type of modified seawater, with deep hydrothermal fluids potentially supplying additional potassium. The basin likely experienced multiple seawater incursion, dissolution and redeposition events in a high-temperature environment with high evaporation rates.展开更多
Potassium-rich brine in the Sichuan Basin has been much studied in recent years, but few studies have focused on the distribution and migration of salt basin and the differences of potassium formation mechanisms. This...Potassium-rich brine in the Sichuan Basin has been much studied in recent years, but few studies have focused on the distribution and migration of salt basin and the differences of potassium formation mechanisms. This work examined the salt-gathering and potassium formation of potassiumrich brine during the Triassic in the Sichuan Basin using lithofacies palaeogeographic depiction and geochemical analyses.(1) The favorable sedimentary facies controlling the formation of potassium-rich brine during the Triassic in the Sichuan Basin are evaporation platform and restricted platform, whereas the salt basin is one of the main factors controlling the poly-salt center.(2) The distribution and migration of this salt basin were affected by certain factors. The salt basin of the Jialingjiang Formation was mainly distributed in the east and central Sichuan Basin, whereas that of the Leikoupo Formation was mainly distributed in the central and west Sichuan Basin. The sedimentary centers have gradually moved westward and become smaller.(3) Three main formation mechanisms were identified for the potassium-rich brine during the Triassic in the Sichuan Basin, i.e., evaporation and concentration of seawater, surface fresh water leaching, and deep water-rock reaction. Fresh water leaching was characterized by low anomaly δ18 O and δ13 C values. Water-rock reaction was mainly related to temperature, and high temperature environment(caused by burial depth, overthrust and deep hydrothermal fluids) was beneficial to water-rock reaction. The characteristics of water-rock reaction do not correspond to the increase ratio of K·103/Cl and Br·103/Cl in brine, and the Rb+ content of the brine was high.(4) The formation mechanisms of potassium-rich brine differed between different areas of the Sichuan Basin. In east Sichuan, the evaporation and concentration of seawater, together with meteoric fresh water leaching, was the main formation factor, whereas the evaporation and concentration of seawater and water–rock reaction predominated in west Sichuan. This study of the sedimentary environment and formation mechanisms is of significance to the exploration and exploitation of potassium-rich brine in the Sichuan Basin.展开更多
A novel method for removing boron with ion exchange resin from residual brines to manufacture boron-free magnesia is described. The concentration of boron in the target magnesia manufactured thereby from Qinghai salt...A novel method for removing boron with ion exchange resin from residual brines to manufacture boron-free magnesia is described. The concentration of boron in the target magnesia manufactured thereby from Qinghai salt lakes is lower than 5 mg/g, and the typical D50 size of product is 10.625 mm.展开更多
The protective chromium coating was prepared on P110 steel by employing pack cementation.The corrosion behaviors of P110 steel and the obtained coating in CO2-saturated simulated oilfield brine were studied by static ...The protective chromium coating was prepared on P110 steel by employing pack cementation.The corrosion behaviors of P110 steel and the obtained coating in CO2-saturated simulated oilfield brine were studied by static complete immersion tests and electrochemical measurements.The corrosion attacks of the samples were determined by mass loss,corroded surface morphologies,corrosion products,and results of electrochemical measurements.The experimental results showed that the coating was uniform,continuous and compact.The chromium coating was slightly corroded,and the mass loss and corrosion rate of the coating were far lower than those of P110 steel.Chromium coating has higher self-corroding potential and lower corrosion current density than P110 steel in accordance with the electrochemical tests results.Taken as a whole,chromizing treatment has significantly improved the corrosion resistance of P110 steel.展开更多
Chemical interferences (ionization and oxide/hydroxide formation) on the atomic absorbance signal of lithium in FAAS analysis of brine samples are elaborated in this article. It is suggested that inadequate or overa...Chemical interferences (ionization and oxide/hydroxide formation) on the atomic absorbance signal of lithium in FAAS analysis of brine samples are elaborated in this article. It is suggested that inadequate or overaddition of deionization buffers can lead to loss of sensitivities under particular operating conditions. In the analysis of brine samples, signal enhancing and oxide/hydroxide formation inducing signal reduction resulting from overaddition of deionization buffers can be seen with varying amounts of chemical buffers. Based on experimental results, the authors have arrived at the optimized operating conditions for the detection of lithium, under which both ionization and stable compound formation can be suppressed. This is a simplified and quick method with adequate accuracy and precision for the determination of lithium in routine brine samples from chemical plants or R&D laboratories, which contain comparable amounts of lithium with some other components.展开更多
The comprehensive utilization and environment-friendliness of processes for recovering fresh water or valuable salt from seawater, salt-lakes, or mineral deposits are of utmost importance for sustainable development.O...The comprehensive utilization and environment-friendliness of processes for recovering fresh water or valuable salt from seawater, salt-lakes, or mineral deposits are of utmost importance for sustainable development.One primitive sustainable process for recovering salt from sodium-sulfate-type brine in Yuncheng salt lake had been considered one of the greatest inventions of ancient China, however, the replaced process of mass extraction of single Na_2SO_4 in recent years, has reduced a large amount of residual brine.In this research, relying on the salt-forming diagram in the non-equilibrium state, the technical secrets of ancient salt processes were uncovered, and a new comprehensive utilization system was proposed and tested experimentally.The new system includes a vacuum salt-making process and a normal pressure kieserite process, which can gradually eliminate the existed waste liquid and aid in the sustainable development of the Yuncheng salt-lake.The continuous experiment of salt-making process running stably in the double salt region without double salt formation, which proves the feasibility of salt-forming diagram applied in industrial process.Thus salt-forming diagram would be extremely valuable to industry process design and control, especially, the treatment of concentrated brine.展开更多
文摘Lithology of Triassic in southwestern Sichuan is consistent with the whole basin,and there is no discussion about stratum division,the difference is stratum denudation which is made by the uplifting of Luzhou uplift,especially
基金The Major Projects of Xinjiang Uyghur Autonomous Region of China(Grant Nos.2020A03005-2 and 2022A03009-2)from the Chinese governmentthe National Natural Science Foundation of China(Grant No.40830420)provided the funding for this study。
文摘Lop Nur is located at the eastmost end of the Tarim Basin in Xinjiang,Northwestern China.This study reviews the hydrochemical characteristics and evolution of underground brine in Lop Nur,based on analytical data from 429 water samples(mainly brine).It is found that in the NE-SW direction,from the periphery to the Luobei sub-depression,while the hydrochemical type varies from the sodium sulfate subtype(S)to the magnesium sulfate subtype(M),the corresponding brine in the phase diagram transfers from the thenardite phase(Then)area,through the bloedite phase(Blo),epsomite phase(Eps),picromerite phase(Picro),finally reaching the sylvite phase(Syl)area.As for the degree of evolution,the sequence is the periphery<Luobei horizontally and the overlying glauberite brine<the underlying clastic brine vertically.It is concluded that the oxygen and hydrogen isotopic compositions of the brine have evidently been affected through the effects of evaporation and altitude,as well as the changes in local water circulation in recent years.Boron and chloride isotopic compositions show that the glauberite brine is formed under more arid conditions than the clastic one.The strontium isotopic composition indicates that the Lop Nur brine primarily originates from surface water;however,deep recharge may also be involved in the evolution of the brine,according to previous noble gas studies.It is confirmed that the brine in Lop Nur has become enriched with potassium prior to halite precipitation over the full course of the salt lake's evolution.Based on chemical compositions of brine from drillhole LDK01 and previous lithological studies,the evolution of the salt lake can be divided into three stages and it is inferred that the brine in Lop Nur may have undergone at least two significant concentration-dilution periods.
基金supported by the King Fahd University of Pe-troleum and Minerals[Grant No.KU201004]Khalifa University[Grant No.KU-KFUPM-2020-28]H2FC2303 DSR Project of KFUPM.
文摘High-density brines have been recognized beneficial for oilfield applications,with various key areas such as drilling,completion and formation evaluation.High-density brines can play a critical role in the development and production of oil and gas reservoirs during the primary,secondary,and tertiary recovery phases.High-density brines can enhance the mobility and recovery of the oil in the reservoir by controlling the density and viscosity.However,a less attention has been given to the application of high-density brine in the area of reservoir development.This review is shedding light on a concise overview of reservoir development stages in association with the recovery mechanisms.In addition,most possible applications of high-density fluids have also been reviewed in the field of the reservoir development.In summary,this review state that high-density brines can be used to stimulate reservoirs by hydraulic fracturing during the primary recovery phase.However,the risk of increased interfacial tension,which relies on the density difference of two fluids,can trap more residual oil relative to conventional water flooding.In addition,high-density brines are effective in decreasing the mobility ratio and facilitating favorable displacement during polymer flooding.However,they can be least effective in alkaline flooding due to the high IFT related to large density differences.Thus,it is suggested to consider the utilization of sustainable high-density brines by taking into account effective factors in petroleum engineering aspects such as stimulation,secondary recovery and polymer flooding.
基金financially supported by the National Natural Science Foundation of China(No.52072322)the Department of Science and Technology of Sichuan Province,China(Nos.23GJHZ0147,23ZDYF0262,2022YFG0294,and 2019-GH02-00052-HZ)。
文摘Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines give rise to challenges,such as prolonged lithium extraction periods,diminished lithium extraction efficiency,and considerable environmental pollution.In this work,Li FePO4(LFP)served as the electrode material for electrochemical lithium extraction.The conductive network in the LFP electrode was optimized by adjusting the type of conductive agent.This approach resulted in high lithium extraction efficiency and extended cycle life.When the single conductive agent of acetylene black(AB)or multiwalled carbon nanotubes(MWCNTs)was replaced with the mixed conductive agent of AB/MWCNTs,the average diffusion coefficient of Li+in the electrode increased from 2.35×10^(-9)or 1.77×10^(-9)to 4.21×10^(-9)cm^(2)·s^(-1).At the current density of 20 mA·g^(-1),the average lithium extraction capacity per gram of LFP electrode increased from 30.36 mg with the single conductive agent(AB)to 35.62 mg with the mixed conductive agent(AB/MWCNTs).When the mixed conductive agent was used,the capacity retention of the electrode after 30 cycles reached 82.9%,which was considerably higher than the capacity retention of 65.8%obtained when the single AB was utilized.Meanwhile,the electrode with mixed conductive agent of AB/MWCNTs provided good cycling performance.When the conductive agent content decreased or the loading capacity increased,the electrode containing the mixed conductive agent continued to show excellent electrochemical performance.Furthermore,a self-designed,highly efficient,continuous lithium extraction device was constructed.The electrode utilizing the AB/MWCNT mixed conductive agent maintained excellent adsorption capacity and cycling performance in this device.This work provides a new perspective for the electrochemical extraction of lithium using LFP electrodes.
基金Project(20606008)supported by the National Natural Science Foundation of ChinaProject(11070210)supported by the Fundamental Research Funds for the Central Universities of China
文摘The residues of salt lake brine from which potassium had been removed were used to extract Rb+ and Cs+ together with a sulphonated kerosene(SK) solution of 1.0 mol/L 4-tert-butyl-2-(α-methylbenzyl) phenol(t-BAMBP). Rb+ and Cs+ were enriched and separated effectively by precipitating Mg2+ before extraction and by scrubbing out K+ and Na+ repeatedly before stripping. The effects of the volume ratio of organic phase to aqueous extraction phase(O/A), alkalinity of aqueous phase(c(OH)-), interference from K+ and Mg2+, and ratio the volume of organic phase to aqueous scrubbing phase(O/A′) were investigated. The experimental brine was extracted optimally by 5-stage extraction with 1.0 mol/L t-BAMBP in SK, c(OH-)=1 mol/L, and O/A=1:1. The scrubbing yield of rubidium was only about 10.5% when the extraction solvent was washed 3 times with 1×10-4 mol/L Na OH at O/A′=1:0.5. After 5-stage countercurrent extraction, the final extraction yields of Rb+ and Cs+ reached 95.04% and 99.80%, respectively.
基金Project(U1407137)supported by the National Natural Science Foundation of China
文摘Salt lake brine was reacted with activated aluminum-based alloys and lithium was precipitated.The effects of aluminum-based alloys on precipitating lithium were investigated and the reasonable alloy used to extract lithium from brine was obtained.The effects of the mole ratio of Al to Li and Ca content of Al-Ca alloy,the initial concentration of lithiumion ion in solution,reaction temperature and reaction time on the adsorption rate of lithium were studied,and the optimized process parameters were determined.The results show that the mole ratio of Al to Li and Ca content of Al-Ca alloy and reaction temperature have great influences on the precipitation rate of lithium.The precipitation rate of lithium reaches 94.6% under the optimal condition,indicating that Al-Ca alloy is suitable for the extraction of lithium from salt lake brine.
基金Supported by Chunhui Plan of Ministry of Education(Z2010101)Open Fund of Food Biotechnology Key Laboratory of Sichuan Province(SZJJ2009-014)Scientific Research Foundation of Xihua University(000022)~~
文摘[Objective] This study aimed to screen an Na+/H+ antiporter gene from the halophiles colonizing in the Dagong Ancient Brine Well in Zigong City, China, and then analyze the gene structure and properties of the protein encoded by this gene. [Method] Metagenomic DNA libraries of halophiles from the Dagong Ancient Brine Well were used for screening genes with Na+/H+ antiporter activity in antiporter-defi- cient E. coil KNabc strain by functional complementation. Then the start codon, stop codon, ORF, -35 region, -10 region and SD sequence of Na~/H+ antiporter gene, as well as the molecular weight, isoelectric point, hydrophobic region, transmembrane domain, phyletic evolution and salt resistance of protein encoded by the gene were investigated. [Result] A new Na+/H+ antiporter gene m-nha was obtained, which ,ren- dered the antiporter-negative mutant E. coil KNabc cells with both the resistance to Na+ and the ability to grow under alkaline conditions. [Conclusion] The structure and amino acid sequence of M-Nha was different from the previously reported Na+/H~ antiporters, and the m-nha gene disclosed from the Dagong Ancient Brine Well was identified as a novel Na+/H+ antiporter gene. This study was significant not only in helping us understand the salt tolerance of halophiles in ancient brine wells and develop and utilize the genes resource, but also in exploring new salt-tolerant genes.
基金Supported by Key Projects in Social Development Field of Guangdong Province,Science and Technology Department of Guangdong Province "Green Using Technology of Waste Brine"(A2009011-007(c))~~
文摘[ Objective ] The paper was to study the effect of sea brine on the growth of Fusarium graminearum. [ Method] The inhibition rate of sea brine against F. gram/nearum was measured using mycelial growth rate method. The inhibition effect of sea brine against infection of F. gram/nearum on maize was measured through leaf culture method in vitro. [Result] With the decrease of sea brine concentration, its inhibition against F. gram/nearum had no remarkable regulation, which first decreased, then increased, and finally decreased. It had the best inhibition effect as the concentration was 0.005 0% with the inhibition rate of 31.2%. 0.050 0% sea brine had the best inhibition effect against the infection of F. graminearum with the inhibition rate of 44.3%. [ Conclusion] The results provided theoretical basis for the application of sea brine in the aspects of plant diseases and vests control
基金supported by the National Natural Science Foundation of China (Grant U1507202, U1707603)the Innovative Research Groups of National Natural Science Foundation of China (Grant 21521005)the Key R&D Program of Qinghai Province (Grant 2017-GX-144)
文摘The extraction of lithium from salt lake brine in the Chinese Qaidam Basin is challenging due to its high Mg/Li and Na/Li ratios. Herein, we utilized a reaction-coupled separation technology to separate sodium and lithium ions from a high Na/Li ratio brine(Na/Li = 48.7, w/w) and extracted lithium with Li Al-layered double hydroxides(Li Al-LDHs). The Li Al-LDHs act as lithium-ion-selective capturing materials from multication brines. That is, the lithium ions selectively enter the solid phase to form Li Al-LDHs, and the sodium ions are still retained in the liquid phase. This is because the lithium ions can be incorporated into the structural vacancies of LiAl-LDHs, whereas the sodium ions cannot. The effects of reaction conditions on lithium loss and separation efficiency were investigated at both the nucleation and the crystallization stage, e.g., the nucleation rotating speed, the Li/Al molar ratio, the crystallization temperature and time, and co-existing cations. The lithium loss is as low as 3.93% under optimal separation conditions.The sodium ions remained in the solution. Consequently, an excellent Na/Li separation efficiency was achieved by this reaction-coupled separation technology. These findings confirm that LiAl-LDHs play a critical function in selectively capturing lithium ions from brines with a high Na/Li ratio, which is useful for the extraction of lithium ions from the abundant salt lake brine resources in China.
文摘Objective:To investigate the antibacterial and cytotoxic activity of fourteen different edible vegetables methanolic extract from Bangladesh.Methods:The antibacterial activity was evaluated using disc diffusion assay method against 12 bacteria(both gram positive and gram negative).The plant extracts were also screened for cytotoxic activity using the brine shrimp lethality bioassay method and the lethal concentrations(LC_(50))were determined at confidence intervals by analyzing the data on a computer loaded with"Finney Programme??Results:All the vegetable extracts showed low to elevated levels of antibacterial activity against most of the tested strains(zone of inhibition=5-28 mm).The most active extract against all bacterial strains was from Xanthium indicum which showed remarkable antibacterial activity having the diameter of growth inhibition zone ranging from 12 to 28 mm followed by Alternanthera sessilis(zone of inhibition=6-21 mm).All extracts exhibited considerable general toxicity towards brine shrimps.The LC_(50)value of the tested extracts was within the range of 8.447 to 60.323μg/mL with respect to the positive control(vincristine sulphate)which was 0.91μg/mL.Among all studied extracts,Xanthium indicum displayed the highest cytotoxic effect with LC_(50)value of 8.447μg/mL.Conclusions:The results of the present investigation suggest that most of the studied plants are potentially good source of antibacterial and anticancer agents.
基金supported by the Basic Research Project for the Central Public Welfare Scientific Institutions of China (No.K1405)the National Key Project for Basic Research of China (No.2011CB403007)the National Natural Science Foundation of China (No.41572067)
文摘The Mengyejing potash deposit is located in the southern port of the Simao Basin, Yunnan Province, and is hosted in mid-Cretaceous strata. The chemical compositions of fluid inclusions in halite crystals, collected from the level-610 adit in the deposit, were analysed by laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS). The results show that the brine is of the Na-K-Mg-Ca-Cl type and has K concentrations that are distinctly higher than those of Mg and Ca, unlike normal brines associated with Cretaceous halite. The high K concentrations indicate that the degree of evaporation of the ancient Mengyejing saline lake was very high, reaching the sylvite deposition stage but rarely reaching the carnallite deposition stage. The trajectory of the H and O isotopic compositions of the brines in the halite-hosted fluid inclusions corresponds to intense evaporation, indicating that the net evaporation exceeded the net inflow of brines. These brine compositions in halite-hosted fluid inclusions were likely formed by the dissolution of previously deposited K-bearing minerals by fresh continental and/or seawater, forming a type of modified seawater, with deep hydrothermal fluids potentially supplying additional potassium. The basin likely experienced multiple seawater incursion, dissolution and redeposition events in a high-temperature environment with high evaporation rates.
基金supported by the Project of Survey and Evaluation of Potash Minerals in the Western Region (grant No. DD20160054)the National Natural Science Foundation (grant No. 91755215)
文摘Potassium-rich brine in the Sichuan Basin has been much studied in recent years, but few studies have focused on the distribution and migration of salt basin and the differences of potassium formation mechanisms. This work examined the salt-gathering and potassium formation of potassiumrich brine during the Triassic in the Sichuan Basin using lithofacies palaeogeographic depiction and geochemical analyses.(1) The favorable sedimentary facies controlling the formation of potassium-rich brine during the Triassic in the Sichuan Basin are evaporation platform and restricted platform, whereas the salt basin is one of the main factors controlling the poly-salt center.(2) The distribution and migration of this salt basin were affected by certain factors. The salt basin of the Jialingjiang Formation was mainly distributed in the east and central Sichuan Basin, whereas that of the Leikoupo Formation was mainly distributed in the central and west Sichuan Basin. The sedimentary centers have gradually moved westward and become smaller.(3) Three main formation mechanisms were identified for the potassium-rich brine during the Triassic in the Sichuan Basin, i.e., evaporation and concentration of seawater, surface fresh water leaching, and deep water-rock reaction. Fresh water leaching was characterized by low anomaly δ18 O and δ13 C values. Water-rock reaction was mainly related to temperature, and high temperature environment(caused by burial depth, overthrust and deep hydrothermal fluids) was beneficial to water-rock reaction. The characteristics of water-rock reaction do not correspond to the increase ratio of K·103/Cl and Br·103/Cl in brine, and the Rb+ content of the brine was high.(4) The formation mechanisms of potassium-rich brine differed between different areas of the Sichuan Basin. In east Sichuan, the evaporation and concentration of seawater, together with meteoric fresh water leaching, was the main formation factor, whereas the evaporation and concentration of seawater and water–rock reaction predominated in west Sichuan. This study of the sedimentary environment and formation mechanisms is of significance to the exploration and exploitation of potassium-rich brine in the Sichuan Basin.
文摘A novel method for removing boron with ion exchange resin from residual brines to manufacture boron-free magnesia is described. The concentration of boron in the target magnesia manufactured thereby from Qinghai salt lakes is lower than 5 mg/g, and the typical D50 size of product is 10.625 mm.
基金Funded by the Science and Technology Programs for Research and Development of Shaanxi Province (No.2008K01-31)
文摘The protective chromium coating was prepared on P110 steel by employing pack cementation.The corrosion behaviors of P110 steel and the obtained coating in CO2-saturated simulated oilfield brine were studied by static complete immersion tests and electrochemical measurements.The corrosion attacks of the samples were determined by mass loss,corroded surface morphologies,corrosion products,and results of electrochemical measurements.The experimental results showed that the coating was uniform,continuous and compact.The chromium coating was slightly corroded,and the mass loss and corrosion rate of the coating were far lower than those of P110 steel.Chromium coating has higher self-corroding potential and lower corrosion current density than P110 steel in accordance with the electrochemical tests results.Taken as a whole,chromizing treatment has significantly improved the corrosion resistance of P110 steel.
文摘Chemical interferences (ionization and oxide/hydroxide formation) on the atomic absorbance signal of lithium in FAAS analysis of brine samples are elaborated in this article. It is suggested that inadequate or overaddition of deionization buffers can lead to loss of sensitivities under particular operating conditions. In the analysis of brine samples, signal enhancing and oxide/hydroxide formation inducing signal reduction resulting from overaddition of deionization buffers can be seen with varying amounts of chemical buffers. Based on experimental results, the authors have arrived at the optimized operating conditions for the detection of lithium, under which both ionization and stable compound formation can be suppressed. This is a simplified and quick method with adequate accuracy and precision for the determination of lithium in routine brine samples from chemical plants or R&D laboratories, which contain comparable amounts of lithium with some other components.
基金Supported by the National Natural Science Foundation of China(U1407204)the Yangtze Scholarsand Research Team in university of Ministry of Education of China(IRT_17R81)+1 种基金the Innovative Research Team of Tianjin Municipal Education Commission(TD12-5004)the Foundation of Tianjin Key Laboratory of Marine Resources and Chemistry(201602)
文摘The comprehensive utilization and environment-friendliness of processes for recovering fresh water or valuable salt from seawater, salt-lakes, or mineral deposits are of utmost importance for sustainable development.One primitive sustainable process for recovering salt from sodium-sulfate-type brine in Yuncheng salt lake had been considered one of the greatest inventions of ancient China, however, the replaced process of mass extraction of single Na_2SO_4 in recent years, has reduced a large amount of residual brine.In this research, relying on the salt-forming diagram in the non-equilibrium state, the technical secrets of ancient salt processes were uncovered, and a new comprehensive utilization system was proposed and tested experimentally.The new system includes a vacuum salt-making process and a normal pressure kieserite process, which can gradually eliminate the existed waste liquid and aid in the sustainable development of the Yuncheng salt-lake.The continuous experiment of salt-making process running stably in the double salt region without double salt formation, which proves the feasibility of salt-forming diagram applied in industrial process.Thus salt-forming diagram would be extremely valuable to industry process design and control, especially, the treatment of concentrated brine.