令G是一个有限图,H是G的一个子图.若V(H)=V(G),则称H为G的生成子图.图G的一个λ重F-因子,记为Sλ(F,G),是G的一个生成子图且可分拆为若干与F同构的子图(称为F-区组)的并,使得V(G)中的每一个顶点恰出现在λ个F-区组中.一个图G的λ重F-因...令G是一个有限图,H是G的一个子图.若V(H)=V(G),则称H为G的生成子图.图G的一个λ重F-因子,记为Sλ(F,G),是G的一个生成子图且可分拆为若干与F同构的子图(称为F-区组)的并,使得V(G)中的每一个顶点恰出现在λ个F-区组中.一个图G的λ重F-因子大集,记为LSλ(F G),是G中所有与F同构的子图的一个分拆{B_i}_i,使得每个B_i均构成一个Sλ(F,G).当λ=1时,λ可省略不写.本文中,我们证明了当v≡4 mod 24时,存在LS(K1,3,Kv,v,v).展开更多
A graph is said to be K1,3-free if it contains no K1,3 as an induced subgraph. It is shown in this paper that every 2-connected K1,3-free graph contains a connected [2,3]-factor. We also obtain that every connected K1...A graph is said to be K1,3-free if it contains no K1,3 as an induced subgraph. It is shown in this paper that every 2-connected K1,3-free graph contains a connected [2,3]-factor. We also obtain that every connected K1,3-free graph has a spanning tree with maximum degree at most 3.展开更多
文摘令G是一个有限图,H是G的一个子图.若V(H)=V(G),则称H为G的生成子图.图G的一个λ重F-因子,记为Sλ(F,G),是G的一个生成子图且可分拆为若干与F同构的子图(称为F-区组)的并,使得V(G)中的每一个顶点恰出现在λ个F-区组中.一个图G的λ重F-因子大集,记为LSλ(F G),是G中所有与F同构的子图的一个分拆{B_i}_i,使得每个B_i均构成一个Sλ(F,G).当λ=1时,λ可省略不写.本文中,我们证明了当v≡4 mod 24时,存在LS(K1,3,Kv,v,v).
文摘A graph is said to be K1,3-free if it contains no K1,3 as an induced subgraph. It is shown in this paper that every 2-connected K1,3-free graph contains a connected [2,3]-factor. We also obtain that every connected K1,3-free graph has a spanning tree with maximum degree at most 3.