Objective:To investigate the effect of MMP-9 inhibitor(Mki67)on the biology of human oral squamous cell carcinoma SCC15 cell line and to explore its mechanism of action through PI3K/Akt signaling pathway.Methods:SCC15...Objective:To investigate the effect of MMP-9 inhibitor(Mki67)on the biology of human oral squamous cell carcinoma SCC15 cell line and to explore its mechanism of action through PI3K/Akt signaling pathway.Methods:SCC15 cells were extracted,and the supernatant was discarded.The cells were then rinsed twice with PBS,and 0,2.5,5,and 10μL of Mki67(50 mg/mL)were added to the culture respectively.The inhibition rate of cell proliferation was detected by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide(MTT)method,and the cell migration was measured by Transwell chamber test.The cell apoptosis rate was detected by cytometry,and the p-Akt protein content in the cells of each group was determined by a double-antibody sandwich enzyme-linked immunosorbent assay(ELISA)kit.Results:The cell proliferation rates of the 2.5μL,5μL,and 10μL dose groups were all lower than the 0μL group(P<0.05)before treatment,and the cell proliferation rates in the 2.5μL,5μL,and 10μL dose groups decreased overtime(P<0.05).After 24 h,with the increase of Mki67 concentration,the number of migration and invasion gradually decreased(P<0.05),and the number of apoptosis gradually increased(P<0.05);besides,the relative expression of MMP-9,PI3K,and Akt mRNA decreased gradually(P<0.05),and the expression level of Akt mRNA was not statistically significant(P>0.05).Conclusion:MMP-9 inhibitor(Mki67)can inhibit the proliferation and migration of SCC15 cell line and induce apoptosis,and its mechanism of action may be related to the inhibition of PI3K/Akt signaling pathway.展开更多
BACKGROUND: Propofol is one of the extensively and commonly used intravenous anesthetics and has the ability to influence the proliferation, motility, and invasiveness of many cancer cells. In this study, the effects ...BACKGROUND: Propofol is one of the extensively and commonly used intravenous anesthetics and has the ability to influence the proliferation, motility, and invasiveness of many cancer cells. In this study, the effects of propofol on hepatocellular carcinoma cells invasion ability were examined. METHODS: We assessed the invasion ability of HepG2 cells in vitro by determining enzyme activity and protein expression of MMP-9 using gelatin zymography assay and Western blot. The real-time PCR was used to evaluate the effect of propofol on microRNA-199a (miR-199a) expression, and miR-199a-2 precursor to evaluate whether over-expression of miR-199a can affect MMP-9 expression. Finally, the effect of miR-199a on propofol-induced anti-tumor activity using anti-miR-199a was assessed. RESULTS: Propofol significantly elevated the expression of miR-199a and inhibited the invasiveness of HepG2 cells. Propofol also efficiently decreased enzyme activity and protein expression of MMP-9. Moreover, the over-expression of miR-199a decreased MMP-9 protein level. Interestingly, the neutralization of miR-199a by anti-miR-199a antibody reversed the effect of propofol on alleviation of tumor invasiveness and inhibition of MMP-9 activity in HepG2 cells. CONCLUSION: Propofol decreases hepatocellular carcinoma cell invasiveness, which is partly due to the down-regulation of MMP-9 expression by miR-199a.展开更多
Fanconi anemia (FA) is a fatal heterogeneous autosomal recessive disorder, characterized by progressive bone marrow failure, congenital defect and cancer predisposition. Cell culture from FA fibroblast (FAF) displays ...Fanconi anemia (FA) is a fatal heterogeneous autosomal recessive disorder, characterized by progressive bone marrow failure, congenital defect and cancer predisposition. Cell culture from FA fibroblast (FAF) displays certain abnormalities as compared to normal human dermal fibroblast (NHDF). This prompted us to investigate the effect of a specific nutrient mixture (NM) containing ascorbic acid, lysine, proline and green tea extract, which has demonstrated a broad spectrum of pharmacological activities, on FAF compared to NHDF. We investigated the in vitro effect of NM on FAF and NHDF cell proliferation by MTT assay, MMPs secretion by zymography, morphology by H&E staining and apoptosis by green caspase assay. FAF (FA-A: PD20, FA-A: PD220) and NHDF were cultured in modified Dulbecco Eagle media. At near confluence, the cells were treated with different concentrations of NM (0, 50, 100, 250, 500 and 1000 μg/ml) in triplicate. The cells were also treated with PMA to induce MMP-9 activity. NM had no effect on FAF cell viability in both cell lines compared to control. In contrast NM exhibited 20% at 50 and 100, 50% at 250, 60% at 500 and 70% toxicity at 1000 μg/ml on NHDF cells. Zymography demonstrated MMP-2 and MMP-9 on PMA stimulation in FAF and NM inhibited the activity of both MMP-2 and MMP-9 in a dose response fashion with total block at 500 μg/ml. In contrast, NHDF exhibited only MMP-2, both active and inactive forms, and NM inhibited their activities in a dose-dependent manner with total block at 1000 μg/ml. H&E staining did not indicate any morphological changes in FAF nor induced apoptosis at higher concentrations, as seen by caspases assay. However, although no morphological changes in NHDF were noted up to NM 100 μg/ml, progressive changes in cell shrinkage, rounding and nuclear condensation, pertaining to apoptosis, were observed at higher concentrations. These changes were consistent with the results from the green caspases apoptosis assay. Our data demonstrate that NM exhibited different responses toward FAF and NHDF. This may in part be due to elevated chromosomal break, deletion and hypersensitivity to cross linking agents, a DNA repair disorder in FAF that is lacking in NHDF.展开更多
文摘Objective:To investigate the effect of MMP-9 inhibitor(Mki67)on the biology of human oral squamous cell carcinoma SCC15 cell line and to explore its mechanism of action through PI3K/Akt signaling pathway.Methods:SCC15 cells were extracted,and the supernatant was discarded.The cells were then rinsed twice with PBS,and 0,2.5,5,and 10μL of Mki67(50 mg/mL)were added to the culture respectively.The inhibition rate of cell proliferation was detected by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide(MTT)method,and the cell migration was measured by Transwell chamber test.The cell apoptosis rate was detected by cytometry,and the p-Akt protein content in the cells of each group was determined by a double-antibody sandwich enzyme-linked immunosorbent assay(ELISA)kit.Results:The cell proliferation rates of the 2.5μL,5μL,and 10μL dose groups were all lower than the 0μL group(P<0.05)before treatment,and the cell proliferation rates in the 2.5μL,5μL,and 10μL dose groups decreased overtime(P<0.05).After 24 h,with the increase of Mki67 concentration,the number of migration and invasion gradually decreased(P<0.05),and the number of apoptosis gradually increased(P<0.05);besides,the relative expression of MMP-9,PI3K,and Akt mRNA decreased gradually(P<0.05),and the expression level of Akt mRNA was not statistically significant(P>0.05).Conclusion:MMP-9 inhibitor(Mki67)can inhibit the proliferation and migration of SCC15 cell line and induce apoptosis,and its mechanism of action may be related to the inhibition of PI3K/Akt signaling pathway.
基金supported by a grant from the Medical Scientific Research Fundation of Zhejiang Province (2013KYA060)
文摘BACKGROUND: Propofol is one of the extensively and commonly used intravenous anesthetics and has the ability to influence the proliferation, motility, and invasiveness of many cancer cells. In this study, the effects of propofol on hepatocellular carcinoma cells invasion ability were examined. METHODS: We assessed the invasion ability of HepG2 cells in vitro by determining enzyme activity and protein expression of MMP-9 using gelatin zymography assay and Western blot. The real-time PCR was used to evaluate the effect of propofol on microRNA-199a (miR-199a) expression, and miR-199a-2 precursor to evaluate whether over-expression of miR-199a can affect MMP-9 expression. Finally, the effect of miR-199a on propofol-induced anti-tumor activity using anti-miR-199a was assessed. RESULTS: Propofol significantly elevated the expression of miR-199a and inhibited the invasiveness of HepG2 cells. Propofol also efficiently decreased enzyme activity and protein expression of MMP-9. Moreover, the over-expression of miR-199a decreased MMP-9 protein level. Interestingly, the neutralization of miR-199a by anti-miR-199a antibody reversed the effect of propofol on alleviation of tumor invasiveness and inhibition of MMP-9 activity in HepG2 cells. CONCLUSION: Propofol decreases hepatocellular carcinoma cell invasiveness, which is partly due to the down-regulation of MMP-9 expression by miR-199a.
文摘Fanconi anemia (FA) is a fatal heterogeneous autosomal recessive disorder, characterized by progressive bone marrow failure, congenital defect and cancer predisposition. Cell culture from FA fibroblast (FAF) displays certain abnormalities as compared to normal human dermal fibroblast (NHDF). This prompted us to investigate the effect of a specific nutrient mixture (NM) containing ascorbic acid, lysine, proline and green tea extract, which has demonstrated a broad spectrum of pharmacological activities, on FAF compared to NHDF. We investigated the in vitro effect of NM on FAF and NHDF cell proliferation by MTT assay, MMPs secretion by zymography, morphology by H&E staining and apoptosis by green caspase assay. FAF (FA-A: PD20, FA-A: PD220) and NHDF were cultured in modified Dulbecco Eagle media. At near confluence, the cells were treated with different concentrations of NM (0, 50, 100, 250, 500 and 1000 μg/ml) in triplicate. The cells were also treated with PMA to induce MMP-9 activity. NM had no effect on FAF cell viability in both cell lines compared to control. In contrast NM exhibited 20% at 50 and 100, 50% at 250, 60% at 500 and 70% toxicity at 1000 μg/ml on NHDF cells. Zymography demonstrated MMP-2 and MMP-9 on PMA stimulation in FAF and NM inhibited the activity of both MMP-2 and MMP-9 in a dose response fashion with total block at 500 μg/ml. In contrast, NHDF exhibited only MMP-2, both active and inactive forms, and NM inhibited their activities in a dose-dependent manner with total block at 1000 μg/ml. H&E staining did not indicate any morphological changes in FAF nor induced apoptosis at higher concentrations, as seen by caspases assay. However, although no morphological changes in NHDF were noted up to NM 100 μg/ml, progressive changes in cell shrinkage, rounding and nuclear condensation, pertaining to apoptosis, were observed at higher concentrations. These changes were consistent with the results from the green caspases apoptosis assay. Our data demonstrate that NM exhibited different responses toward FAF and NHDF. This may in part be due to elevated chromosomal break, deletion and hypersensitivity to cross linking agents, a DNA repair disorder in FAF that is lacking in NHDF.