To find a cost effective,high-precision and environmental friendly way of polishing for optical glass,a series of experiments were focused on about constrained abrasive fluid polishing. Since abrasive particles can re...To find a cost effective,high-precision and environmental friendly way of polishing for optical glass,a series of experiments were focused on about constrained abrasive fluid polishing. Since abrasive particles can repeatedly impact the workpiece in a multidirectional way with high energy, the constrained abrasive fluid polishing method for optical glass has been proposed based on the abrasive fluid machining theory and elastic emission machining theory. A constrained abrasive fluid polishing system was designed and developed to polish K9 glass samples. Results show that K9 glass obtains a high accuracy with less fluid. Experiments indicate that,in a more effective,high-precision and environmental friendly way,constrained abrasive fluid polishing is possible to improve the quality of workpiece surface compared with free abrasive fluid polishing. In the process of removing materials of constrained abrasive fluid polishing,it gives priority to removing the materials of high spot and the high frequency error of smooth local zone can be modified. The abrasive particles can repeatedly impact the workpiece in a multidirectional way,and there are certain relationship among surface quality,material removal rate, and parameters such as speed,clearance, angle, time and particle size. In the process of constrained abrasive fluid polishing, it shows a high material removal rate,and it needn't to clamp workpieces. As a result,it could improve the processing efficiency significantly. The research on constrained abrasive fluid polishing has a practical significance and practical value in industrial production.展开更多
K9 glass is a common material of optics and micro system, with cheaper price and better processing function. With the development of the optical and micro system, the technique of manufacturing micron/nanometer dimens...K9 glass is a common material of optics and micro system, with cheaper price and better processing function. With the development of the optical and micro system, the technique of manufacturing micron/nanometer dimensions microstructure and micro device on K9 glass has used in photoelectron, microwave and diffraction optics device et al The coarse surface of optics and microwave device can cause the light scattering and signal losing, and the function of device reduced. So the supersmooth surface plays an important role in optic and microwave device.展开更多
The propagating of laser-generated ultrasonic waves in K9 glass was investigated. Many methods have been developed to detect the laser ultrasound since laser ultrasonic waves can be used to measure material parameters...The propagating of laser-generated ultrasonic waves in K9 glass was investigated. Many methods have been developed to detect the laser ultrasound since laser ultrasonic waves can be used to measure material parameters or characterize materials properties. In order to reduce the measuring time, a Mach–Zehnder interferometer, a full field measuring tool,was preferred in this paper. The ultrasonic wave was produced on the K9 glass surface by a Q-switched Nd:YAG laser absorbed in a liquid layer. The interferograms were then taken at various delay times by a CCD camera after single pulse induced laser ultrasonic waves. Ultrasonic waves in the K9 glass can be observed from interferogram images. The results provide an understanding of laser ultrasound propagation in K9 glass in the lifetime.展开更多
文摘To find a cost effective,high-precision and environmental friendly way of polishing for optical glass,a series of experiments were focused on about constrained abrasive fluid polishing. Since abrasive particles can repeatedly impact the workpiece in a multidirectional way with high energy, the constrained abrasive fluid polishing method for optical glass has been proposed based on the abrasive fluid machining theory and elastic emission machining theory. A constrained abrasive fluid polishing system was designed and developed to polish K9 glass samples. Results show that K9 glass obtains a high accuracy with less fluid. Experiments indicate that,in a more effective,high-precision and environmental friendly way,constrained abrasive fluid polishing is possible to improve the quality of workpiece surface compared with free abrasive fluid polishing. In the process of removing materials of constrained abrasive fluid polishing,it gives priority to removing the materials of high spot and the high frequency error of smooth local zone can be modified. The abrasive particles can repeatedly impact the workpiece in a multidirectional way,and there are certain relationship among surface quality,material removal rate, and parameters such as speed,clearance, angle, time and particle size. In the process of constrained abrasive fluid polishing, it shows a high material removal rate,and it needn't to clamp workpieces. As a result,it could improve the processing efficiency significantly. The research on constrained abrasive fluid polishing has a practical significance and practical value in industrial production.
文摘K9 glass is a common material of optics and micro system, with cheaper price and better processing function. With the development of the optical and micro system, the technique of manufacturing micron/nanometer dimensions microstructure and micro device on K9 glass has used in photoelectron, microwave and diffraction optics device et al The coarse surface of optics and microwave device can cause the light scattering and signal losing, and the function of device reduced. So the supersmooth surface plays an important role in optic and microwave device.
基金This work was supported by the National Natural Science Foundation of China(NNSFC)(Nos.61975080 and 11774176).
文摘The propagating of laser-generated ultrasonic waves in K9 glass was investigated. Many methods have been developed to detect the laser ultrasound since laser ultrasonic waves can be used to measure material parameters or characterize materials properties. In order to reduce the measuring time, a Mach–Zehnder interferometer, a full field measuring tool,was preferred in this paper. The ultrasonic wave was produced on the K9 glass surface by a Q-switched Nd:YAG laser absorbed in a liquid layer. The interferograms were then taken at various delay times by a CCD camera after single pulse induced laser ultrasonic waves. Ultrasonic waves in the K9 glass can be observed from interferogram images. The results provide an understanding of laser ultrasound propagation in K9 glass in the lifetime.