期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于尖点突变模型的IP网络异常行为检测方法 被引量:2
1
作者 阳小龙 张敏 +2 位作者 胡武生 徐杰 隆克平 《电子科技大学学报》 EI CAS CSCD 北大核心 2011年第6期892-897,共6页
由于数据挖掘、贝叶斯等传统异常检测方法仅依据网络正常行为特征而没考虑异常行为特征,致使其异常检测率偏低和误报率偏高,该文基于尖点突变模型而针对性地提出了一种新的IP网络异常行为描述模型及其检测机制。它们充分利用了尖点突变... 由于数据挖掘、贝叶斯等传统异常检测方法仅依据网络正常行为特征而没考虑异常行为特征,致使其异常检测率偏低和误报率偏高,该文基于尖点突变模型而针对性地提出了一种新的IP网络异常行为描述模型及其检测机制。它们充分利用了尖点突变模型的多稳态性和突变性,准确地描述了网络正常行为特征和异常行为特征。最后以Kdd-Cup 99数据集为例,对比了不同机制的异常检测性能,结果显示,与贝叶斯BN和决策树C4.5等机制相比,所提出的检测机制在检测率和误报率方面都有所优势。 展开更多
关键词 异常检测 尖点突变 IP网络 kdd-cup99数据集
下载PDF
基于自适应直觉模糊推理的入侵检测系统设计与实现
2
作者 张弛 雷英杰 黄孝文 《微电子学与计算机》 CSCD 北大核心 2009年第11期51-54,58,共5页
通过对入侵检测技术和自适应神经-直觉模糊推理系统的研究,设计并实现了基于自适应直觉模糊推理的入侵检测系统.首先,详细阐述了系统的总体框架设计及各模块的设计.其次,选用KDDCUP99数据集作为入侵检测数据集,对设计的入侵检测系统进... 通过对入侵检测技术和自适应神经-直觉模糊推理系统的研究,设计并实现了基于自适应直觉模糊推理的入侵检测系统.首先,详细阐述了系统的总体框架设计及各模块的设计.其次,选用KDDCUP99数据集作为入侵检测数据集,对设计的入侵检测系统进行实现,并详细叙述了具体的检测步骤.最后,通过获得的检测结果验证了系统的可行性. 展开更多
关键词 入侵检测 自适应 直觉模糊推理 KDD CUP 99数据集
下载PDF
Feature Selection for Intrusion Detection Using Random Forest 被引量:11
3
作者 Md. Al Mehedi Hasan Mohammed Nasser +1 位作者 Shamim Ahmad Khademul Islam Molla 《Journal of Information Security》 2016年第3期129-140,共12页
An intrusion detection system collects and analyzes information from different areas within a computer or a network to identify possible security threats that include threats from both outside as well as inside of the... An intrusion detection system collects and analyzes information from different areas within a computer or a network to identify possible security threats that include threats from both outside as well as inside of the organization. It deals with large amount of data, which contains various ir-relevant and redundant features and results in increased processing time and low detection rate. Therefore, feature selection should be treated as an indispensable pre-processing step to improve the overall system performance significantly while mining on huge datasets. In this context, in this paper, we focus on a two-step approach of feature selection based on Random Forest. The first step selects the features with higher variable importance score and guides the initialization of search process for the second step whose outputs the final feature subset for classification and in-terpretation. The effectiveness of this algorithm is demonstrated on KDD’99 intrusion detection datasets, which are based on DARPA 98 dataset, provides labeled data for researchers working in the field of intrusion detection. The important deficiency in the KDD’99 data set is the huge number of redundant records as observed earlier. Therefore, we have derived a data set RRE-KDD by eliminating redundant record from KDD’99 train and test dataset, so the classifiers and feature selection method will not be biased towards more frequent records. This RRE-KDD consists of both KDD99Train+ and KDD99Test+ dataset for training and testing purposes, respectively. The experimental results show that the Random Forest based proposed approach can select most im-portant and relevant features useful for classification, which, in turn, reduces not only the number of input features and time but also increases the classification accuracy. 展开更多
关键词 Feature Selection KDD’99 dataset RRE-KDD dataset Random Forest Permuted Importance Measure
下载PDF
A Novel Intrusion Detection Algorithm Based on Long Short Term Memory Network 被引量:1
4
作者 Xinda Hao Jianmin Zhou +1 位作者 Xueqi Shen Yu Yang 《Journal of Quantum Computing》 2020年第2期97-104,共8页
In recent years,machine learning technology has been widely used for timely network attack detection and classification.However,due to the large number of network traffic and the complex and variable nature of malicio... In recent years,machine learning technology has been widely used for timely network attack detection and classification.However,due to the large number of network traffic and the complex and variable nature of malicious attacks,many challenges have arisen in the field of network intrusion detection.Aiming at the problem that massive and high-dimensional data in cloud computing networks will have a negative impact on anomaly detection,this paper proposes a Bi-LSTM method based on attention mechanism,which learns by transmitting IDS data to multiple hidden layers.Abstract information and high-dimensional feature representation in network data messages are used to improve the accuracy of intrusion detection.In the experiment,we use the public data set KDD-Cup 99 for verification.The experimental results show that the model can effectively detect unpredictable malicious behaviors under the current network environment,improve detection accuracy and reduce false positive rate compared with traditional intrusion detection methods. 展开更多
关键词 Bi-LSTM kdd-cup99 intrusion detection deep learning
下载PDF
基于智能进化算法的DDoS攻击检测防御研究
5
作者 李萌 《计算技术与自动化》 2021年第2期110-117,共8页
为了减少分布式拒绝服务攻击(DDoS),将蚂蚱优化算法(GOA)与机器学习算法结合使用,通过创建入侵检测系统(IDS)来满足监控环境的要求,并能够区分正常和攻击流量。所设计的基于GOA的IDS技术(GOIDS)能够从原始IDS数据集中选择最相关的特征... 为了减少分布式拒绝服务攻击(DDoS),将蚂蚱优化算法(GOA)与机器学习算法结合使用,通过创建入侵检测系统(IDS)来满足监控环境的要求,并能够区分正常和攻击流量。所设计的基于GOA的IDS技术(GOIDS)能够从原始IDS数据集中选择最相关的特征来帮助区分典型的低速DDoS攻击,然后将选择的特征传递给支持向量机(SVM)、决策树(DT)、朴素贝叶斯(NB)和多层感知器(MLP)等分类器来识别攻击类型。利用KDD Cup 99和CIC-IDS 2017公开数据集作为实验数据,仿真结果表明,基于决策树的GOIDS具有较高的检测率和较低的假阳性率。 展开更多
关键词 进化算法 DDOS 入侵检测系统 kdd-cup 99 支持向量机
下载PDF
基于相关向量机的网络入侵检测算法 被引量:2
6
作者 夏俊杰 何迪 《信息安全与通信保密》 2010年第8期47-48,51,共3页
针对支持向量机理论中存在的问题:训练样本数量多以及必须满足Mercer条件等,提出了一种基于相关向量机(RVM)的网络入侵检测方法。首先采用"删除特征"法对KDD 99数据集中的41个特征进行评级,筛选出针对不同入侵类型的重要特征... 针对支持向量机理论中存在的问题:训练样本数量多以及必须满足Mercer条件等,提出了一种基于相关向量机(RVM)的网络入侵检测方法。首先采用"删除特征"法对KDD 99数据集中的41个特征进行评级,筛选出针对不同入侵类型的重要特征和非重要特征,然后只选择重要特征进行匹配。结果表明,这种方法与基于支持向量机(SVM)的入侵检测模型相比,具有更高的检测率和更低的误警率。 展开更多
关键词 入侵检测 支持向量机 相关向量机 KDD 99数据集
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部