Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ ...Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems.展开更多
A highly sensitive and selective catalytic kinetic spectrophotometric method for the determination of Cu(Ⅱ) is proposed. It is based on the catalytic effect of Cu(Ⅱ) on the oxidation of glutathione(GSH) by potassium...A highly sensitive and selective catalytic kinetic spectrophotometric method for the determination of Cu(Ⅱ) is proposed. It is based on the catalytic effect of Cu(Ⅱ) on the oxidation of glutathione(GSH) by potassium hexacyanoferrate(Ⅲ) in acidic medium at 25.0℃. The reaction is monitored spectrophotometrically by measuring the decrease in absorbance of oxidant at 420 nm using the fix-time method. Under the optimum conditions, the proposed method allows the determination of Cu(Ⅱ) in a range of 0-35.0 ng m L^(-1) with good precision and accuracy and the limit of detection is down to 0.04 ng m L^(-1). The relative standard deviation(RSD) is 1.02%. The reaction orders with respect to each reagent are found to be 1, 1/2, and 1/2 for potassium hexacyanoferrate(Ⅲ), glutathione and Cu(Ⅱ) respectively. On the basis of these values, the rate equation is obtained and the possible mechanism is established. Moreover, few anions and cations can interfere with the determination of Cu(Ⅱ). The new proposed method can be successfully used to the determination of Cu(Ⅱ) in fresh water samples and seawater samples. It is found that the proposed method has fairly good selectivity, high sensitivity, good repeatability, simplicity and rapidity.展开更多
Two simple, accurate, precise and economic spectrophotometric methods have been developed for simultaneous determination of Atorvastatin calcium (ATR) and Ezetimibe (EZ) in their bulk powder and pharmaceutical dosage ...Two simple, accurate, precise and economic spectrophotometric methods have been developed for simultaneous determination of Atorvastatin calcium (ATR) and Ezetimibe (EZ) in their bulk powder and pharmaceutical dosage form. Method (I) is based on dual wavelength analysis while method (II) is the mean centering of ratio spectra spectrophotometric (MCR) method. In method (I), two wavelengths were selected for each drug in such a way that the difference in absorbance was zero for the second drug. At wavelengths 226.6 and 244 nm EZ had equal absorbance values; therefore, these two wavelengths have been used to determine ATR; on a similar basis 228.6 and 262.8 nm were selected to determine EZ in their binary mixtures. In method II, the absorption spectra of both ATR and EZ with different concentrations were recorded over the range 200-350, divided by the spectrum of suitable divisor of both ATR and EZ and then the obtained ratio spectra were mean centered. The concentrations of active components were then determined from the calibration graphs obtained by measuring the amplitudes at 215-260 nm (peak to peak) for both ATR and EZ. Accuracy and precision of the developed methods have been tested; in addition recovery studies have been carried out in order to confirm their accuracy. On the other hand, selectivities of the methods were tested by application for determination of different synthetic mixtures containing different ratios of the studied drugs. The developed methods have been successfully used for determination of ATR and EZ in their combined dosage form and statistical comparison of the developed methods with the reported spectrophotometric one using F and Student’s t-tests showed no significant difference regarding both accuracy and precision.展开更多
To develope two simple and accurate spectrophotometric methods for the determination of meloxicam( I )in presence of its degradation products, 5 -methyl -2 -aminothiazole ( II )and benzothiazine carboxylic acid( Ill )...To develope two simple and accurate spectrophotometric methods for the determination of meloxicam( I )in presence of its degradation products, 5 -methyl -2 -aminothiazole ( II )and benzothiazine carboxylic acid( Ill ). Method:Both methods are based on the formation of chelate complexes of the studied drug with uranyl acetate and ferric chloride at room temperature in a methanolic medium. Results:The resulting complexes are stable for 24 hrs and show absorption maxima at 406 nm and 580 nm for uranyl and ferric complexes respectively. These methods are applicable over the concentration ranges of 10 -100 and 37.5 -300 p^g ~ mL-1 with mean recoveries of (99.44 ~ 0. 48 ) % and (99. 42 ~ 0. 45 ) %, and molar absorptivity of 4.67 x 103 and 1. 029 x 103 respectively. Conclusion:Both methods are proved to be stability indicating as no interference was observed with the degradation products. The proposed methods were successfully applied to the determination of the frug in bulk powder, laboratory prepared mixtures containing different percentages of degradation products of the drug in bulk powand pharmaceutical dosage展开更多
基金the financial support provided by the National Natural Science Foundation of China(Grant No.11872013).
文摘Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems.
文摘A highly sensitive and selective catalytic kinetic spectrophotometric method for the determination of Cu(Ⅱ) is proposed. It is based on the catalytic effect of Cu(Ⅱ) on the oxidation of glutathione(GSH) by potassium hexacyanoferrate(Ⅲ) in acidic medium at 25.0℃. The reaction is monitored spectrophotometrically by measuring the decrease in absorbance of oxidant at 420 nm using the fix-time method. Under the optimum conditions, the proposed method allows the determination of Cu(Ⅱ) in a range of 0-35.0 ng m L^(-1) with good precision and accuracy and the limit of detection is down to 0.04 ng m L^(-1). The relative standard deviation(RSD) is 1.02%. The reaction orders with respect to each reagent are found to be 1, 1/2, and 1/2 for potassium hexacyanoferrate(Ⅲ), glutathione and Cu(Ⅱ) respectively. On the basis of these values, the rate equation is obtained and the possible mechanism is established. Moreover, few anions and cations can interfere with the determination of Cu(Ⅱ). The new proposed method can be successfully used to the determination of Cu(Ⅱ) in fresh water samples and seawater samples. It is found that the proposed method has fairly good selectivity, high sensitivity, good repeatability, simplicity and rapidity.
文摘Two simple, accurate, precise and economic spectrophotometric methods have been developed for simultaneous determination of Atorvastatin calcium (ATR) and Ezetimibe (EZ) in their bulk powder and pharmaceutical dosage form. Method (I) is based on dual wavelength analysis while method (II) is the mean centering of ratio spectra spectrophotometric (MCR) method. In method (I), two wavelengths were selected for each drug in such a way that the difference in absorbance was zero for the second drug. At wavelengths 226.6 and 244 nm EZ had equal absorbance values; therefore, these two wavelengths have been used to determine ATR; on a similar basis 228.6 and 262.8 nm were selected to determine EZ in their binary mixtures. In method II, the absorption spectra of both ATR and EZ with different concentrations were recorded over the range 200-350, divided by the spectrum of suitable divisor of both ATR and EZ and then the obtained ratio spectra were mean centered. The concentrations of active components were then determined from the calibration graphs obtained by measuring the amplitudes at 215-260 nm (peak to peak) for both ATR and EZ. Accuracy and precision of the developed methods have been tested; in addition recovery studies have been carried out in order to confirm their accuracy. On the other hand, selectivities of the methods were tested by application for determination of different synthetic mixtures containing different ratios of the studied drugs. The developed methods have been successfully used for determination of ATR and EZ in their combined dosage form and statistical comparison of the developed methods with the reported spectrophotometric one using F and Student’s t-tests showed no significant difference regarding both accuracy and precision.
文摘To develope two simple and accurate spectrophotometric methods for the determination of meloxicam( I )in presence of its degradation products, 5 -methyl -2 -aminothiazole ( II )and benzothiazine carboxylic acid( Ill ). Method:Both methods are based on the formation of chelate complexes of the studied drug with uranyl acetate and ferric chloride at room temperature in a methanolic medium. Results:The resulting complexes are stable for 24 hrs and show absorption maxima at 406 nm and 580 nm for uranyl and ferric complexes respectively. These methods are applicable over the concentration ranges of 10 -100 and 37.5 -300 p^g ~ mL-1 with mean recoveries of (99.44 ~ 0. 48 ) % and (99. 42 ~ 0. 45 ) %, and molar absorptivity of 4.67 x 103 and 1. 029 x 103 respectively. Conclusion:Both methods are proved to be stability indicating as no interference was observed with the degradation products. The proposed methods were successfully applied to the determination of the frug in bulk powder, laboratory prepared mixtures containing different percentages of degradation products of the drug in bulk powand pharmaceutical dosage