A semi-analytical method is introduced to study kink instability in cylindrical plasma with line-tied boundary conditions. The method is based on an expansion for magnetohydrodynamics (MHD) equations in one-dimensio...A semi-analytical method is introduced to study kink instability in cylindrical plasma with line-tied boundary conditions. The method is based on an expansion for magnetohydrodynamics (MHD) equations in one-dimensional (1D) radial eigenvalue problems by using Fourier transforms. The MHD equations then become an ordinary differential equation. This method is applicable to both ideal and non-ideal MHD problem. The effect of plasma pressure (P0) on kink instability is studied in a cylindrical geometry. Complex discrete spectra are pre- sented. Two-dimensional (2D) eigenfunctions with the line-tied boundary conditions are obtained. The growth rate and radial eigenfunctions are different in the two cases of P0 = 0 and P0 ≠ 0, which indicate that the effect of plasma pressure can not be ignored if it is large enough. This method allows us to understand the role of individual radial eigenfunctions, and is also computationally efficient compared to direct solutions of the MHD equations by the finite difference method.展开更多
A three-dimensional (3-D) transient model has been developed to investigate plasma deformation driven by a magnetic field and its influence on arc stability in a circuit breaker. The 3-D distribution of electric cur...A three-dimensional (3-D) transient model has been developed to investigate plasma deformation driven by a magnetic field and its influence on arc stability in a circuit breaker. The 3-D distribution of electric current density is obtained from a current continuity equation along with the generalized Ohm's law; while the magnetic field induced by the current flowing through the arc column is calculated by the magnetic vector potential equation. When gas interacts with an arc column, fundamental factors, such as Ampere's law, Ohm's law, the turbulence model, transport equations of mass, momentum and energy of plasma flow, have to be coupled for aria- lyzing the phenomenon. The coupled interactions between arc and plasma flow are described in the fl'amework of time-dependent magnetohydrodynamic (MHD) equations in conjunction with a K-~ turbulence model. Simulations have been focused on sausage and kink instabilities in plasma (these phenomena are related tO pinch effects and electromagnetic fields). The 3-D sjm- ulation reveals the relation between plasma deformation and instability phenomena, which affect arc stability during circuit breaker operation. Plasma deformation is the consequence of coupled interactions between the electromagnetic force and plasma flow described in simulations.展开更多
A criterion of an ideal internal kink mode is derived for a shaped tokamak configuration in which q-profile is very flat in the core region. A combining criterion is obtained including the necessary criterion of Merci...A criterion of an ideal internal kink mode is derived for a shaped tokamak configuration in which q-profile is very flat in the core region. A combining criterion is obtained including the necessary criterion of Mercier and the sufficient criterion of Lortz. The new criterion makes progress compared with the necessary criterion of Mercier. In the elongated plasma, a poloidal beta can cause instability, while the triangularity has a stabilizing effect. The result is applicable for DIII-D and SUNIST.展开更多
The strange characteristics of ball lightning are considered as a question hard to explain. In order to solve the problem, in this paper a complete model of plasma vortex is presented for the ball lightning. By ideal ...The strange characteristics of ball lightning are considered as a question hard to explain. In order to solve the problem, in this paper a complete model of plasma vortex is presented for the ball lightning. By ideal MHD equations, through imposing disturbance to plasma column, the possibility of sausage and kink instability of the lightning channel is analyzed from the perspective the minimum potential energy. The conclusion is that the kink instability (m = 1) is most prone to occur. And when instability occurs, because of the difference of the magnetic field in the twisted area, the magnetic pressure makes the trend further and therefore forming the plasma vortex that may eventually turn into ball lightning if the energy of the vortex is large enough. The existence of the vortex makes ball lightning have a short period of time stability. By the proposed model, the ball lightning features that are hard to understand in the past are explained. In this paper, the reason for bead lightning is also explained from the perspective of the sausage instability.展开更多
In this Letter, we firstly, to the best of our knowledge, demonstrated the influence of pre-pulse current and delay time on the intensity of a discharge pumped Ne-like Ar soft X-ray laser operating at 46.9 nm by emplo...In this Letter, we firstly, to the best of our knowledge, demonstrated the influence of pre-pulse current and delay time on the intensity of a discharge pumped Ne-like Ar soft X-ray laser operating at 46.9 nm by employing an alumina capillary having an inner diameter of 4.8 mm. Specifically, the delay time was changed from 8 to 520 μs in small intervals. The pre-discharge current was increased from 25 A to 250 A through small steps, while keeping the main discharge current constant. Usually, a small pre-discharge current is applied to an Ar-filled capillary to attain a plasma column having sufficient pre-ionization before the injection of the main current. The predischarge current of 140 A was declared the best current to obtain lasing with a 4.8 mm diameter capillary.The laser spots were captured at best time delays for the pre-discharge currents of 25, 45, 80, 140, and250 A, which support the experimental results. We observed that by applying the pre-discharge current of140 A, the laser spot exhibits small divergence, higher symmetry, and uniformity, which is clear evidence of strong amplification. The laser spot obtained at 140 A is cylindrically symmetric and has a better structure than those reported by all other groups in the literature. Hence, the laser spot indicates that the laser beam is highly focusable and beneficial for the applications of the 46.9 nm laser. Results of this Letter might open a new way to enhance applications of a 46.9 nm capillary discharge soft X-ray laser.展开更多
基金supported by National Basic Research Program of China (No.2008CB717801)National Natural Science Foundation of China (No.10875024)Laboratory of College and University Program of Liaoning Province of China (No.2008S059)
文摘A semi-analytical method is introduced to study kink instability in cylindrical plasma with line-tied boundary conditions. The method is based on an expansion for magnetohydrodynamics (MHD) equations in one-dimensional (1D) radial eigenvalue problems by using Fourier transforms. The MHD equations then become an ordinary differential equation. This method is applicable to both ideal and non-ideal MHD problem. The effect of plasma pressure (P0) on kink instability is studied in a cylindrical geometry. Complex discrete spectra are pre- sented. Two-dimensional (2D) eigenfunctions with the line-tied boundary conditions are obtained. The growth rate and radial eigenfunctions are different in the two cases of P0 = 0 and P0 ≠ 0, which indicate that the effect of plasma pressure can not be ignored if it is large enough. This method allows us to understand the role of individual radial eigenfunctions, and is also computationally efficient compared to direct solutions of the MHD equations by the finite difference method.
文摘A three-dimensional (3-D) transient model has been developed to investigate plasma deformation driven by a magnetic field and its influence on arc stability in a circuit breaker. The 3-D distribution of electric current density is obtained from a current continuity equation along with the generalized Ohm's law; while the magnetic field induced by the current flowing through the arc column is calculated by the magnetic vector potential equation. When gas interacts with an arc column, fundamental factors, such as Ampere's law, Ohm's law, the turbulence model, transport equations of mass, momentum and energy of plasma flow, have to be coupled for aria- lyzing the phenomenon. The coupled interactions between arc and plasma flow are described in the fl'amework of time-dependent magnetohydrodynamic (MHD) equations in conjunction with a K-~ turbulence model. Simulations have been focused on sausage and kink instabilities in plasma (these phenomena are related tO pinch effects and electromagnetic fields). The 3-D sjm- ulation reveals the relation between plasma deformation and instability phenomena, which affect arc stability during circuit breaker operation. Plasma deformation is the consequence of coupled interactions between the electromagnetic force and plasma flow described in simulations.
基金This work was supported by National Natural Science Foundation of China No.19885006,No.10175020 Nuclear Science Foundation of China No.Y7100C0301.
文摘A criterion of an ideal internal kink mode is derived for a shaped tokamak configuration in which q-profile is very flat in the core region. A combining criterion is obtained including the necessary criterion of Mercier and the sufficient criterion of Lortz. The new criterion makes progress compared with the necessary criterion of Mercier. In the elongated plasma, a poloidal beta can cause instability, while the triangularity has a stabilizing effect. The result is applicable for DIII-D and SUNIST.
文摘The strange characteristics of ball lightning are considered as a question hard to explain. In order to solve the problem, in this paper a complete model of plasma vortex is presented for the ball lightning. By ideal MHD equations, through imposing disturbance to plasma column, the possibility of sausage and kink instability of the lightning channel is analyzed from the perspective the minimum potential energy. The conclusion is that the kink instability (m = 1) is most prone to occur. And when instability occurs, because of the difference of the magnetic field in the twisted area, the magnetic pressure makes the trend further and therefore forming the plasma vortex that may eventually turn into ball lightning if the energy of the vortex is large enough. The existence of the vortex makes ball lightning have a short period of time stability. By the proposed model, the ball lightning features that are hard to understand in the past are explained. In this paper, the reason for bead lightning is also explained from the perspective of the sausage instability.
基金supported by the National Natural Science Foundation of China (Nos. 61275139 and61875045)。
文摘In this Letter, we firstly, to the best of our knowledge, demonstrated the influence of pre-pulse current and delay time on the intensity of a discharge pumped Ne-like Ar soft X-ray laser operating at 46.9 nm by employing an alumina capillary having an inner diameter of 4.8 mm. Specifically, the delay time was changed from 8 to 520 μs in small intervals. The pre-discharge current was increased from 25 A to 250 A through small steps, while keeping the main discharge current constant. Usually, a small pre-discharge current is applied to an Ar-filled capillary to attain a plasma column having sufficient pre-ionization before the injection of the main current. The predischarge current of 140 A was declared the best current to obtain lasing with a 4.8 mm diameter capillary.The laser spots were captured at best time delays for the pre-discharge currents of 25, 45, 80, 140, and250 A, which support the experimental results. We observed that by applying the pre-discharge current of140 A, the laser spot exhibits small divergence, higher symmetry, and uniformity, which is clear evidence of strong amplification. The laser spot obtained at 140 A is cylindrically symmetric and has a better structure than those reported by all other groups in the literature. Hence, the laser spot indicates that the laser beam is highly focusable and beneficial for the applications of the 46.9 nm laser. Results of this Letter might open a new way to enhance applications of a 46.9 nm capillary discharge soft X-ray laser.