OBJECTIVE: To assess the effect of a mixture of five herbal extracts(FT-5) on insulin resistance, glucose/lipid metabolism, hepatic steatosis, and to investigate whether the combination of FT-5 and pioglitazone would ...OBJECTIVE: To assess the effect of a mixture of five herbal extracts(FT-5) on insulin resistance, glucose/lipid metabolism, hepatic steatosis, and to investigate whether the combination of FT-5 and pioglitazone would provide a robust effect on diabetes treatment, while may minimize undesirable side-effects of pioglitazone in diabetic Ay gene(KKAy)mice.METHODS: Seven-week-old KKAy mice were randomly divided into five groups: control(CON)group, FT-5(2.0 g/kg) group, pioglitazone(20 mg/kg)(PIO) group, pioglitazone(20 mg/kg) + FT-5(2.0 g/kg)(P + F) group. Age-matched C57 BL/6 J micewere used as the control group. After seven weeks of continuous intragastric administration of medication, the glucose metabolism, insulin sensitivity and lipid metabolism of KKAy mice were evaluated by assessing the fasting blood glucose(FBG), oral glucose tolerance test(OGTT), fasting serum insulin(FINS), insulin tolerance test(ITT), homeostasis model of assessment-insulin resistance index(HOMA-IR), total cholesterol(TC), total triglycerides(TG), and free fatty acids(FFA) in plasma and liver.Plasma and hepatic adiponectin were measured via enzyme-linked immunosorbent assays. Genes related to adipogenesis and lipolysis in white adipose tissues(WAT) and liver were examined by real-time polymerase chain reaction. Lipid metabolism-related protein expression in the liver of KKAy mice were detected by Western blotting.RESULTS: PIO treatment remarkably improved insulin resistance. However, it also showed substantial side effects. FT-5 group exhibited no significant decrease in serum glucose. However, it reduced fasting plasma TG levels and improved hepatic steatosis of KKAy mice. P + F group showed improved insulin resistance and similar body weight gain, as compared with control group. The m RNA expression of genes related to fatty acid oxidation was markedly up-regulated in the liver of P + F group.Pioglitazone administration markedly decreased the phosphorylation levels of AMPK, as compared with all other groups. Besides, even though plasma adiponectin increased in PIO, FT-5, P + F group, adipo R2 gene expression significantly decreased in the liver of PIO group.CONCLUSION: FT-5 decreased plasma TG and alleviated aggravating hepatic steatosis induced by pioglitazone in KKAy mice. FT-5's mechanism might be associated with its ability to activate the Adipo R2/AMPK pathway.展开更多
Although bulk endocytosis has been found in a number of neuronal and endocrine cells,the molecular mechanism and physiological function of bulk endocytosis remain elusive.In pancreatic beta cells,we have observed bulk...Although bulk endocytosis has been found in a number of neuronal and endocrine cells,the molecular mechanism and physiological function of bulk endocytosis remain elusive.In pancreatic beta cells,we have observed bulk-like endocytosis evoked both by flash photolysis and trains of depolarization.Bulk-like endocytosis is a clathrin-independent process that is facilitated by enhanced extracellular Ca^(2+) entry and suppressed by the inhibition of dynamin function.Moreover,defects in bulklike endocytosis are accompanied by hyperinsulinemia in primary beta cells dissociated from diabetic KKAy mice,which suggests that bulk-like endocytosis plays an important role in maintaining the exo-endocytosis balance and beta cell secretory capability.展开更多
基金Supported by the Science and Technology Support Program of China(No.2014BAI10B04)
文摘OBJECTIVE: To assess the effect of a mixture of five herbal extracts(FT-5) on insulin resistance, glucose/lipid metabolism, hepatic steatosis, and to investigate whether the combination of FT-5 and pioglitazone would provide a robust effect on diabetes treatment, while may minimize undesirable side-effects of pioglitazone in diabetic Ay gene(KKAy)mice.METHODS: Seven-week-old KKAy mice were randomly divided into five groups: control(CON)group, FT-5(2.0 g/kg) group, pioglitazone(20 mg/kg)(PIO) group, pioglitazone(20 mg/kg) + FT-5(2.0 g/kg)(P + F) group. Age-matched C57 BL/6 J micewere used as the control group. After seven weeks of continuous intragastric administration of medication, the glucose metabolism, insulin sensitivity and lipid metabolism of KKAy mice were evaluated by assessing the fasting blood glucose(FBG), oral glucose tolerance test(OGTT), fasting serum insulin(FINS), insulin tolerance test(ITT), homeostasis model of assessment-insulin resistance index(HOMA-IR), total cholesterol(TC), total triglycerides(TG), and free fatty acids(FFA) in plasma and liver.Plasma and hepatic adiponectin were measured via enzyme-linked immunosorbent assays. Genes related to adipogenesis and lipolysis in white adipose tissues(WAT) and liver were examined by real-time polymerase chain reaction. Lipid metabolism-related protein expression in the liver of KKAy mice were detected by Western blotting.RESULTS: PIO treatment remarkably improved insulin resistance. However, it also showed substantial side effects. FT-5 group exhibited no significant decrease in serum glucose. However, it reduced fasting plasma TG levels and improved hepatic steatosis of KKAy mice. P + F group showed improved insulin resistance and similar body weight gain, as compared with control group. The m RNA expression of genes related to fatty acid oxidation was markedly up-regulated in the liver of P + F group.Pioglitazone administration markedly decreased the phosphorylation levels of AMPK, as compared with all other groups. Besides, even though plasma adiponectin increased in PIO, FT-5, P + F group, adipo R2 gene expression significantly decreased in the liver of PIO group.CONCLUSION: FT-5 decreased plasma TG and alleviated aggravating hepatic steatosis induced by pioglitazone in KKAy mice. FT-5's mechanism might be associated with its ability to activate the Adipo R2/AMPK pathway.
基金supported by a grant from the National Natural Science Foundation of China(Grant No.30871225)a grant from Beijing Municipal Science and Technology Commission(Grant No.7121008)+1 种基金a grant from the Ministry of Science and Technology(Grant No.SQ2011SF11B01041)the fund from The Key Construction Program of the National“985”Project from the Department of Education of China to Peking University.
文摘Although bulk endocytosis has been found in a number of neuronal and endocrine cells,the molecular mechanism and physiological function of bulk endocytosis remain elusive.In pancreatic beta cells,we have observed bulk-like endocytosis evoked both by flash photolysis and trains of depolarization.Bulk-like endocytosis is a clathrin-independent process that is facilitated by enhanced extracellular Ca^(2+) entry and suppressed by the inhibition of dynamin function.Moreover,defects in bulklike endocytosis are accompanied by hyperinsulinemia in primary beta cells dissociated from diabetic KKAy mice,which suggests that bulk-like endocytosis plays an important role in maintaining the exo-endocytosis balance and beta cell secretory capability.