股市的情绪化倾向是股票市场具有高度不确定性的主要原因,直接利用历史数据的股票趋势预测方法难以适应市场情绪的多变性,在实际应用中效果不理想。文章针对市场情绪的不稳定性导致股市拐点难以预测的问题,提出一种基于情绪向量的隐半...股市的情绪化倾向是股票市场具有高度不确定性的主要原因,直接利用历史数据的股票趋势预测方法难以适应市场情绪的多变性,在实际应用中效果不理想。文章针对市场情绪的不稳定性导致股市拐点难以预测的问题,提出一种基于情绪向量的隐半马尔可夫模型股市拐点预测方法(hidden semi-Markov model stock turning point prediction method based on sentiment vector,SV-HSMM)。针对市场情绪不可观察性,选取与市场情绪相关的主要特征,使用马尔可夫毯融合成市场情绪;利用隐半马尔可夫模型建模市场环境,构建市场情绪、市场状态和状态持续时间之间的结构关系;引入情绪向量平滑情绪的多变性,并利用Kullback-Leibler(KL)距离量化情绪热度;利用隐半马尔可夫模型的动态推理实现股市拐点预测。结果表明情绪向量方法具有更好的预测效果。展开更多
Many kinds of channel currents are especially weak and the background noise dominates in the patch clamp recordings. This makes the threshold detection fail during estimating of the transition probabilities. So direct...Many kinds of channel currents are especially weak and the background noise dominates in the patch clamp recordings. This makes the threshold detection fail during estimating of the transition probabilities. So direct fitting of the patch clamp recording, not of the histogram coming from the recordings, is a desirable way to estimate the transition probabilities. Iterative batch EM algorithm based on hidden markov model has been used in this field but which has the "curse of dimensionality" and besides cant keep tracking the varying of the parameters. A new on line sequential iterative one is proposed here, which needs fewer computational efforts and can adaptively keep tracking the varying of parameters. Simulations suggest its robust, effective and convenient.展开更多
实际工业过程中,量测数据除了在线仪表采集的快速率数据,还有离线化验等慢速率辅助量测数据.为了更好地利用离线化验数据,增加在线估计的精度,针对随机跳变系统,引入迁移学习思想,提出迁移交互多模型估计(Transfer interacting multiple...实际工业过程中,量测数据除了在线仪表采集的快速率数据,还有离线化验等慢速率辅助量测数据.为了更好地利用离线化验数据,增加在线估计的精度,针对随机跳变系统,引入迁移学习思想,提出迁移交互多模型估计(Transfer interacting multiple model state estimator,IMM-TF)新策略.首先,将离线化验数据的边缘分布作为可以迁移的知识,迁移到贝叶斯后验分布,实现辅助量测数据的充分利用.其次,利用KL(Kullback-Leibler)散度度量知识迁移前后任务间的差异性,求解最优的贝叶斯迁移估计器.同时,结合慢速率量测,利用平滑策略获取待迁移的估计值,解决多率量测下的迁移估计难题.然后,利用影响力函数构建辅助量测数据与估计性能之间的解析关系,从而对迁移效果进行定量评价.最后,通过在目标跟踪实例中的应用,表明所提方法的有效性及优越性.展开更多
文摘股市的情绪化倾向是股票市场具有高度不确定性的主要原因,直接利用历史数据的股票趋势预测方法难以适应市场情绪的多变性,在实际应用中效果不理想。文章针对市场情绪的不稳定性导致股市拐点难以预测的问题,提出一种基于情绪向量的隐半马尔可夫模型股市拐点预测方法(hidden semi-Markov model stock turning point prediction method based on sentiment vector,SV-HSMM)。针对市场情绪不可观察性,选取与市场情绪相关的主要特征,使用马尔可夫毯融合成市场情绪;利用隐半马尔可夫模型建模市场环境,构建市场情绪、市场状态和状态持续时间之间的结构关系;引入情绪向量平滑情绪的多变性,并利用Kullback-Leibler(KL)距离量化情绪热度;利用隐半马尔可夫模型的动态推理实现股市拐点预测。结果表明情绪向量方法具有更好的预测效果。
文摘Many kinds of channel currents are especially weak and the background noise dominates in the patch clamp recordings. This makes the threshold detection fail during estimating of the transition probabilities. So direct fitting of the patch clamp recording, not of the histogram coming from the recordings, is a desirable way to estimate the transition probabilities. Iterative batch EM algorithm based on hidden markov model has been used in this field but which has the "curse of dimensionality" and besides cant keep tracking the varying of the parameters. A new on line sequential iterative one is proposed here, which needs fewer computational efforts and can adaptively keep tracking the varying of parameters. Simulations suggest its robust, effective and convenient.
文摘实际工业过程中,量测数据除了在线仪表采集的快速率数据,还有离线化验等慢速率辅助量测数据.为了更好地利用离线化验数据,增加在线估计的精度,针对随机跳变系统,引入迁移学习思想,提出迁移交互多模型估计(Transfer interacting multiple model state estimator,IMM-TF)新策略.首先,将离线化验数据的边缘分布作为可以迁移的知识,迁移到贝叶斯后验分布,实现辅助量测数据的充分利用.其次,利用KL(Kullback-Leibler)散度度量知识迁移前后任务间的差异性,求解最优的贝叶斯迁移估计器.同时,结合慢速率量测,利用平滑策略获取待迁移的估计值,解决多率量测下的迁移估计难题.然后,利用影响力函数构建辅助量测数据与估计性能之间的解析关系,从而对迁移效果进行定量评价.最后,通过在目标跟踪实例中的应用,表明所提方法的有效性及优越性.