期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于密度的K-Means算法及在客户细分中的应用研究 被引量:11
1
作者 向坚持 刘相滨 资武成 《计算机工程与应用》 CSCD 北大核心 2008年第35期246-248,共3页
针对K-Means算法所存在的问题进行了深入研究,提出了基于密度的K-Means算法(KMAD算法)。该算法采用聚类对象区域空间的密度分布方法来确定聚类个数K的值,然后用高密度区域的质心作为K-Means算法的初始聚类中心。理论分析与实验结果表明... 针对K-Means算法所存在的问题进行了深入研究,提出了基于密度的K-Means算法(KMAD算法)。该算法采用聚类对象区域空间的密度分布方法来确定聚类个数K的值,然后用高密度区域的质心作为K-Means算法的初始聚类中心。理论分析与实验结果表明了改进算法的有效性和稳定性,并将改进的算法应用于客户细分研究中。 展开更多
关键词 K—Means算法 kmad算法 密度 客户细分
下载PDF
核典型相关分析的高分辨遥感影像变化检测 被引量:4
2
作者 李建磊 王光辉 杨化超 《测绘科学》 CSCD 北大核心 2018年第1期140-144,共5页
传统的线性多变量变化检测方法在处理高分辨率遥感影像变化检测时,容易出现明显的"椒盐现象"的问题。该文基于面向对象的分析思想,提出核典型相关的变化检测方法。首先对高分辨率遥感影像进行多尺度分割获得影像对象;然后运... 传统的线性多变量变化检测方法在处理高分辨率遥感影像变化检测时,容易出现明显的"椒盐现象"的问题。该文基于面向对象的分析思想,提出核典型相关的变化检测方法。首先对高分辨率遥感影像进行多尺度分割获得影像对象;然后运用核函数多变量典型相关分析,构造差异向量,并进行最小噪声变换,提高影像对象的信噪比;最后采用ROC曲线确定最佳的变化检测阈值。实验结果表明,该方法不仅消除了"椒盐"现象的干扰,而且提高了变化检测的精度。 展开更多
关键词 变化检测 多尺度分割 核典型相关 高分辨率遥感影像
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部