Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance d...Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance due to the complex molecular structure of lignin and its intricate chemical reactions during the activation process.In this study,three porous carbons were synthesized from lignin by spray drying and chemical activation with vary-ing KOH ratios.The specific surface area and structural order of the prepared porous carbon continued to increase with the increase of the KOH ratio.Thermogravimetric-mass spectrometry(TG-MS)was employed to track the molecular fragments generated during the pyrolysis of KOH-activated lignin,and the mechanism of the thermochemical conversion was investigated.During the thermochemical conversion of lignin,KOH facili-tated the removal of H2 and CO,leading to the formation of not only more micropores and mesopores,but also more ordered carbon structures.The pore structure exhibited a greater impact than the carbon structure on the electrochemical performance of porous carbon.The optimized porous carbon exhibited a capacitance of 256 F g-1 at a current density of 0.2 A g-1,making it an ideal electrode material for high-performance supercapacitors.展开更多
This study investigates how large-surface-area biocarbons with high phenolic adsorption capacities can be obtained from cheap and abundant rice husk(RH).The RH is directly mixed with potassium hydroxide(KOH)and activa...This study investigates how large-surface-area biocarbons with high phenolic adsorption capacities can be obtained from cheap and abundant rice husk(RH).The RH is directly mixed with potassium hydroxide(KOH)and activated in a flowing N_(2) atmosphere,and the effects of the pyrolysis temperature and KOH to RH ratio on the structure of the obtained activated carbon adsorbents and their adsorption of p-nitrophenol and phenol are studied.The results show that the optimum pyrolysis temperature of RH is 750℃,whereby the highest surface area of 2047 m^(2)/g and best adsorption performance are obtained with a KOH to RH ratio of 3:1.Moreover,the obtained biocarbons achieve a maximum adsorption capacity of 175 mg/g for phenol and 430 mg/g for p-nitrophenol,which are higher than most previously reported data.展开更多
KOH活化法制备高比表面积活性炭通常需要消耗大量KOH。为提高KOH利用效率,开发了一种基于K插层-脱插循环(以下简称“K循环”)的KOH活化石油焦制备高比表面积活性炭并联产H_(2)的方法:在升温活化过程,KOH与碳质原料反应转化为单质K、K_(...KOH活化法制备高比表面积活性炭通常需要消耗大量KOH。为提高KOH利用效率,开发了一种基于K插层-脱插循环(以下简称“K循环”)的KOH活化石油焦制备高比表面积活性炭并联产H_(2)的方法:在升温活化过程,KOH与碳质原料反应转化为单质K、K_(2)O和K_(2)CO_(3)并析出H_(2),而K_(2)CO_(3)可继续反应生成单质K和K_(2)O;在降温脱插过程,脱插试剂水蒸气与插层K、游离单质K和K2O反应生成KOH和H_(2);生成的KOH在二次升温活化时再次与碳质原料反应,如此构成K循环。在水平舟式反应器中考察了碳质原料种类(石油焦和石墨)、活化剂KOH和其活化中间产物K_(2)CO_(3)对活化过程气体产物析出规律和产品活性炭孔隙结构性质的影响,并在此基础上分析了K循环机理。结果表明,K循环效率和H_(2)产量因所用碳质原料与活化剂不同而不同:石油焦的反应活性远高于石墨,KOH活化性能优于K_(2)CO_(3)。在KOH活化石油焦的K循环过程中,KOH转化率达80%,而K_(2)CO_(3)转化率为18.5%,经由K_(2)CO_(3)的转化环节决定了K循环效率。以石油焦为碳质原料、KOH为活化剂,在活化温度为800℃及脱插温度为250℃的条件下,4.5 g干燥后的石油焦与13.5 g KOH经二次活化-脱插,所得活性炭比表面积达2808 m^(2)/g,并联产1403 mL/g H_(2)(1 g石油焦产生1403 mL H_(2))。展开更多
Activated carbons derived from corncob (CACs) were prepared by pyrolysis carbonization and KOH activation. Through modifying activation conditions, samples with large pore volume and ultrahigh BET specific surface a...Activated carbons derived from corncob (CACs) were prepared by pyrolysis carbonization and KOH activation. Through modifying activation conditions, samples with large pore volume and ultrahigh BET specific surface area could be obtained. The sample achieved the highest hydrogen uptake capacity of 5.80 wt% at 40 bar and -196℃ The as-obtained samples were characterized by N2-sorption, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Besides, thermogravimetric analysis was also employed to investigate the activation behavior of CACs. Detailed investigation on the activation parameters reveals that moderate activation temperature and heating rate are favorable for preparing CACs with high surface area, large pore volume and optimal pore size distribution. Meanwhile, the micropore volume between 0.65 nm and 0.85 nm along with BET surface area and total pore volume has great effects on hydrogen uptake capacities. The present results indicate that CACs are the most promising materials for hydrogen storage application.展开更多
The microwave induced argon plasma was applied to the preparation of NaOH-activated carbon from sugar cane bagasse. The distinguished feature of the heating technique with this cold plasma is the short operation time....The microwave induced argon plasma was applied to the preparation of NaOH-activated carbon from sugar cane bagasse. The distinguished feature of the heating technique with this cold plasma is the short operation time. The carbonization and the activation process were finalized in one step within 3 min. The prepared activated carbon with NaOH ratio 3 to bagasse characterized using N2 adsorption of type IV (IUPAC classification) to give specific surface area of 1980 m2/g and mesopore volume of 0.73 ml/g. It also showed a higher specific capacitance of 201 F/g in 1 M H2SO4 solution (with standard three electrodes) than the corresponding one by the conventional heating, previously reported. The other features were the absence of oxygen groups and the presence of carbon centered stable radicals, detected by ESR spectra, on the surface.展开更多
An activated carbon with ash content less than 10% and specific surface area more than 1 600 m 2 /g was prepared from coal and the effect of K containing compounds in preparation of coal based activated carbon was inv...An activated carbon with ash content less than 10% and specific surface area more than 1 600 m 2 /g was prepared from coal and the effect of K containing compounds in preparation of coal based activated carbon was investigated in detail in this paper. KOH was used in co carbonization with coal, changes in graphitic crystallites in chars derived from carbonization of coal with and without KOH were analyzed by X ray diffraction (XRD) technique, activation rates of chars with different contents of K containing compounds were deduced, and resulting activated carbons were characterized by nitrogen adsorption isotherms at 77 K and iodine numbers. The results showed that the addition of KOH to the coal before carbonization can realize the intensive removal of inorganic matters from chars under mild conditions, especially the efficient removal of dispersive quartz, an extremely difficult separated mineral component in other processes else. Apart from this, KOH demonstrates a favorable effect in control over coal carbonization with the goal to form nongraphitizable isotropic carbon precursor, which is a necessary prerequisite for the formation and development of micro pores. However, the K containing compounds such as K 2 CO 3 and K 2 O remaining in chars after carbonization catalyze the reaction between carbon and steam in activation, which leads to the formation of macro pores. In the end an innovative method, in which KOH is added to coal before carbonization and K containing compounds are removed by acid washing after carbonization, was proposed for the synthesis of quality coal based activated carbon.展开更多
This study specifically investigated the influence of the composition of aluminosilicate material <i>i.e.</span><span> </span></span><span><span><span style="font-fami...This study specifically investigated the influence of the composition of aluminosilicate material <i>i.e.</span><span> </span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"></i> the substitution of metakaolin by rice husk ash and the nature of alkaline activators (Na<sup>+</sup>/K<sup>+</sup>) on mineralogical, structural, physical and mechanical properties of geopolymer binders. This influence was evaluated based on X-ray diffraction (XRD), Fourier Transform InfraRed spectroscopy (FTIR) and Scanning Electron Microscope (SEM analyses, apparent density, water accessible porosity, compressive strength and thermal properties. Two types of geopolymer binder were synthesized according to the type of alkali activator used, the NaOH-based geopolymer and the KOH-based geopolymer. The results of characterization performed after 14 days of curing of geopolymer samples showed that the activation of the aluminosilicate powder using alkaline solution led to change in their micro</span><span style="font-family:Verdana;">structure. The highest compressive strength was obtained with the</span><span style="font-family:Verdana;"> NaOH-based geopolymer.展开更多
基金funding from the Key Research and Development Projects of Zhejiang Province(2022C01236)and the Ningbo Top Talent Project.
文摘Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance due to the complex molecular structure of lignin and its intricate chemical reactions during the activation process.In this study,three porous carbons were synthesized from lignin by spray drying and chemical activation with vary-ing KOH ratios.The specific surface area and structural order of the prepared porous carbon continued to increase with the increase of the KOH ratio.Thermogravimetric-mass spectrometry(TG-MS)was employed to track the molecular fragments generated during the pyrolysis of KOH-activated lignin,and the mechanism of the thermochemical conversion was investigated.During the thermochemical conversion of lignin,KOH facili-tated the removal of H2 and CO,leading to the formation of not only more micropores and mesopores,but also more ordered carbon structures.The pore structure exhibited a greater impact than the carbon structure on the electrochemical performance of porous carbon.The optimized porous carbon exhibited a capacitance of 256 F g-1 at a current density of 0.2 A g-1,making it an ideal electrode material for high-performance supercapacitors.
文摘This study investigates how large-surface-area biocarbons with high phenolic adsorption capacities can be obtained from cheap and abundant rice husk(RH).The RH is directly mixed with potassium hydroxide(KOH)and activated in a flowing N_(2) atmosphere,and the effects of the pyrolysis temperature and KOH to RH ratio on the structure of the obtained activated carbon adsorbents and their adsorption of p-nitrophenol and phenol are studied.The results show that the optimum pyrolysis temperature of RH is 750℃,whereby the highest surface area of 2047 m^(2)/g and best adsorption performance are obtained with a KOH to RH ratio of 3:1.Moreover,the obtained biocarbons achieve a maximum adsorption capacity of 175 mg/g for phenol and 430 mg/g for p-nitrophenol,which are higher than most previously reported data.
文摘KOH活化法制备高比表面积活性炭通常需要消耗大量KOH。为提高KOH利用效率,开发了一种基于K插层-脱插循环(以下简称“K循环”)的KOH活化石油焦制备高比表面积活性炭并联产H_(2)的方法:在升温活化过程,KOH与碳质原料反应转化为单质K、K_(2)O和K_(2)CO_(3)并析出H_(2),而K_(2)CO_(3)可继续反应生成单质K和K_(2)O;在降温脱插过程,脱插试剂水蒸气与插层K、游离单质K和K2O反应生成KOH和H_(2);生成的KOH在二次升温活化时再次与碳质原料反应,如此构成K循环。在水平舟式反应器中考察了碳质原料种类(石油焦和石墨)、活化剂KOH和其活化中间产物K_(2)CO_(3)对活化过程气体产物析出规律和产品活性炭孔隙结构性质的影响,并在此基础上分析了K循环机理。结果表明,K循环效率和H_(2)产量因所用碳质原料与活化剂不同而不同:石油焦的反应活性远高于石墨,KOH活化性能优于K_(2)CO_(3)。在KOH活化石油焦的K循环过程中,KOH转化率达80%,而K_(2)CO_(3)转化率为18.5%,经由K_(2)CO_(3)的转化环节决定了K循环效率。以石油焦为碳质原料、KOH为活化剂,在活化温度为800℃及脱插温度为250℃的条件下,4.5 g干燥后的石油焦与13.5 g KOH经二次活化-脱插,所得活性炭比表面积达2808 m^(2)/g,并联产1403 mL/g H_(2)(1 g石油焦产生1403 mL H_(2))。
基金supported by the National High Technology Research and Development Program of China(863 Program)(2012AA053305)the International Cooperation Project from Ministry of Science and Technology of China(2010DFA64080)
文摘Activated carbons derived from corncob (CACs) were prepared by pyrolysis carbonization and KOH activation. Through modifying activation conditions, samples with large pore volume and ultrahigh BET specific surface area could be obtained. The sample achieved the highest hydrogen uptake capacity of 5.80 wt% at 40 bar and -196℃ The as-obtained samples were characterized by N2-sorption, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Besides, thermogravimetric analysis was also employed to investigate the activation behavior of CACs. Detailed investigation on the activation parameters reveals that moderate activation temperature and heating rate are favorable for preparing CACs with high surface area, large pore volume and optimal pore size distribution. Meanwhile, the micropore volume between 0.65 nm and 0.85 nm along with BET surface area and total pore volume has great effects on hydrogen uptake capacities. The present results indicate that CACs are the most promising materials for hydrogen storage application.
文摘The microwave induced argon plasma was applied to the preparation of NaOH-activated carbon from sugar cane bagasse. The distinguished feature of the heating technique with this cold plasma is the short operation time. The carbonization and the activation process were finalized in one step within 3 min. The prepared activated carbon with NaOH ratio 3 to bagasse characterized using N2 adsorption of type IV (IUPAC classification) to give specific surface area of 1980 m2/g and mesopore volume of 0.73 ml/g. It also showed a higher specific capacitance of 201 F/g in 1 M H2SO4 solution (with standard three electrodes) than the corresponding one by the conventional heating, previously reported. The other features were the absence of oxygen groups and the presence of carbon centered stable radicals, detected by ESR spectra, on the surface.
文摘An activated carbon with ash content less than 10% and specific surface area more than 1 600 m 2 /g was prepared from coal and the effect of K containing compounds in preparation of coal based activated carbon was investigated in detail in this paper. KOH was used in co carbonization with coal, changes in graphitic crystallites in chars derived from carbonization of coal with and without KOH were analyzed by X ray diffraction (XRD) technique, activation rates of chars with different contents of K containing compounds were deduced, and resulting activated carbons were characterized by nitrogen adsorption isotherms at 77 K and iodine numbers. The results showed that the addition of KOH to the coal before carbonization can realize the intensive removal of inorganic matters from chars under mild conditions, especially the efficient removal of dispersive quartz, an extremely difficult separated mineral component in other processes else. Apart from this, KOH demonstrates a favorable effect in control over coal carbonization with the goal to form nongraphitizable isotropic carbon precursor, which is a necessary prerequisite for the formation and development of micro pores. However, the K containing compounds such as K 2 CO 3 and K 2 O remaining in chars after carbonization catalyze the reaction between carbon and steam in activation, which leads to the formation of macro pores. In the end an innovative method, in which KOH is added to coal before carbonization and K containing compounds are removed by acid washing after carbonization, was proposed for the synthesis of quality coal based activated carbon.
文摘This study specifically investigated the influence of the composition of aluminosilicate material <i>i.e.</span><span> </span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"></i> the substitution of metakaolin by rice husk ash and the nature of alkaline activators (Na<sup>+</sup>/K<sup>+</sup>) on mineralogical, structural, physical and mechanical properties of geopolymer binders. This influence was evaluated based on X-ray diffraction (XRD), Fourier Transform InfraRed spectroscopy (FTIR) and Scanning Electron Microscope (SEM analyses, apparent density, water accessible porosity, compressive strength and thermal properties. Two types of geopolymer binder were synthesized according to the type of alkali activator used, the NaOH-based geopolymer and the KOH-based geopolymer. The results of characterization performed after 14 days of curing of geopolymer samples showed that the activation of the aluminosilicate powder using alkaline solution led to change in their micro</span><span style="font-family:Verdana;">structure. The highest compressive strength was obtained with the</span><span style="font-family:Verdana;"> NaOH-based geopolymer.