基于并联机构单一性能指标的多样性和各单一性能指标之间的非线性关系,将核主成分分析(Kernel Principal Component Analysis,KPCA)方法与误差反传播(Back Propagation,BP)神经网络技术相结合,建立一个对可完成不同工作任务的并联机构...基于并联机构单一性能指标的多样性和各单一性能指标之间的非线性关系,将核主成分分析(Kernel Principal Component Analysis,KPCA)方法与误差反传播(Back Propagation,BP)神经网络技术相结合,建立一个对可完成不同工作任务的并联机构进行综合性能评价的KPCA-BP神经网络模型。通过合理的系统抽样,利用KPCA对BP神经网络的输入数据进行预处理,既能处理各单一性能指标间的非线性关系,又能简化BP神经网络结构,加快网络学习速度,提高预测精度,进而提出一种基于多种单一性能指标的并联机构全局综合性能评价新方法,为并联机构工作任务优序关系研究提供科学的参考依据。展开更多
为了解决多工况、非线性工业过程的故障检测问题,在基于先验知识的基础之上提出了基于多核主元分析方法(Multiple-Kernel Principal Component Analysis,KPCA)的故障检测办法。首先收集每个工况稳态过程的历史正常数据,直接建立子KPCA...为了解决多工况、非线性工业过程的故障检测问题,在基于先验知识的基础之上提出了基于多核主元分析方法(Multiple-Kernel Principal Component Analysis,KPCA)的故障检测办法。首先收集每个工况稳态过程的历史正常数据,直接建立子KPCA模型求得各自的控制限,其次收集工况间的过渡过程的历史正常数据,采取加权平均法求其控制限,最后对过程的故障数据进行检测。以田纳西-伊斯曼过程(Tennessee-Eastman Process,TEP)与MATLAB结合进行仿真实验。仿真结果表明,与单工况、非线性过程进行相比,该方法更为快速、准确。展开更多
目的研究复杂工业系统动态、非线性特点,提出分步动态核主元分析(Kernel Principal Component Analysis,KPCA)的故障诊断方法.方法该方法首先构造增广矩阵,然后将增广矩阵分成一系列子矩阵,将各子矩阵的构建一个新的数据增广矩阵,并对...目的研究复杂工业系统动态、非线性特点,提出分步动态核主元分析(Kernel Principal Component Analysis,KPCA)的故障诊断方法.方法该方法首先构造增广矩阵,然后将增广矩阵分成一系列子矩阵,将各子矩阵的构建一个新的数据增广矩阵,并对每个子矩阵使用KPCA提取变量数据的非线性空间相关特征,最后通过监测统计量监测出系统故障,用贡献度的方法识别发生故障变量.结果该方法改进了传统的动态方法,引入分步动态的定义,并且能充分考虑工业过程中的非线性和动态性,更精确的描述工业过程特性,更精确的监测复杂工业系统的故障,并准确的识别出故障变量.结论对热连轧过程中活套故障诊断的仿真结果表明:基于分步动态KPCA的故障诊断方法能准确有效地诊断出故障,并识别出产生故障的原因.展开更多
文摘基于并联机构单一性能指标的多样性和各单一性能指标之间的非线性关系,将核主成分分析(Kernel Principal Component Analysis,KPCA)方法与误差反传播(Back Propagation,BP)神经网络技术相结合,建立一个对可完成不同工作任务的并联机构进行综合性能评价的KPCA-BP神经网络模型。通过合理的系统抽样,利用KPCA对BP神经网络的输入数据进行预处理,既能处理各单一性能指标间的非线性关系,又能简化BP神经网络结构,加快网络学习速度,提高预测精度,进而提出一种基于多种单一性能指标的并联机构全局综合性能评价新方法,为并联机构工作任务优序关系研究提供科学的参考依据。
文摘为了解决多工况、非线性工业过程的故障检测问题,在基于先验知识的基础之上提出了基于多核主元分析方法(Multiple-Kernel Principal Component Analysis,KPCA)的故障检测办法。首先收集每个工况稳态过程的历史正常数据,直接建立子KPCA模型求得各自的控制限,其次收集工况间的过渡过程的历史正常数据,采取加权平均法求其控制限,最后对过程的故障数据进行检测。以田纳西-伊斯曼过程(Tennessee-Eastman Process,TEP)与MATLAB结合进行仿真实验。仿真结果表明,与单工况、非线性过程进行相比,该方法更为快速、准确。
文摘目的研究复杂工业系统动态、非线性特点,提出分步动态核主元分析(Kernel Principal Component Analysis,KPCA)的故障诊断方法.方法该方法首先构造增广矩阵,然后将增广矩阵分成一系列子矩阵,将各子矩阵的构建一个新的数据增广矩阵,并对每个子矩阵使用KPCA提取变量数据的非线性空间相关特征,最后通过监测统计量监测出系统故障,用贡献度的方法识别发生故障变量.结果该方法改进了传统的动态方法,引入分步动态的定义,并且能充分考虑工业过程中的非线性和动态性,更精确的描述工业过程特性,更精确的监测复杂工业系统的故障,并准确的识别出故障变量.结论对热连轧过程中活套故障诊断的仿真结果表明:基于分步动态KPCA的故障诊断方法能准确有效地诊断出故障,并识别出产生故障的原因.