Using the Sol-Gel method to produce the KTN ultrafine powder and the sintering technique with K2O atmosphere to prepare KTN ceramics as the targets instead of the KTN single crystal, highly oriented KTN thin films wer...Using the Sol-Gel method to produce the KTN ultrafine powder and the sintering technique with K2O atmosphere to prepare KTN ceramics as the targets instead of the KTN single crystal, highly oriented KTN thin films were produced on the transparent single crystal quartz (100) by the pulsed laser deposition (PLD). Since the thermal stress sustained by the quartz is relatively small, the limit temperature of the quartz substrates(300℃) is much lower than that of the P-Si substrates (560℃); the prepared thin film is at amorphous state. Increasing the pulsed laser energy density in the process incorporated with annealing the film after deposition at different temperatures converts the amorphous films into crystal. The optimal pulsed laser energy density and annealing temperature were 2.0 J/cm2 and 600℃, respectively. A discussion was made to understand the mechanism of film production at relatively low substrate temperature by PLD and effects of the annealing temperatures on the forming of the perovskite phase, and optimal conditions for the orientation of the crystal grain.展开更多
1 Introduction The Sol-Gel process has received a great deal of attention, primarily because it can offer many advantages over the conventional process, such as high purity, molecular-level homogeneity, easier composi...1 Introduction The Sol-Gel process has received a great deal of attention, primarily because it can offer many advantages over the conventional process, such as high purity, molecular-level homogeneity, easier composition control and reduced processing temperature. These advantages make Sol-Gel process become one of the promising fabrication methods for ferroelectric ceramics. Sol-Gel-derived thin films of BaTiO<sub>3</sub>, PbTiO<sub>3</sub>, Pb (Zr, Ti)O<sub>3</sub>, PLZT and others have all been reported, but there is little information relating to the potential展开更多
An ablation model of targets irradiated by pulsed laser is established. By using the simple energy balance conditions, the relationship between ablation surface location and time is derived. By an adiabatic approximat...An ablation model of targets irradiated by pulsed laser is established. By using the simple energy balance conditions, the relationship between ablation surface location and time is derived. By an adiabatic approximation, the continuous-temperature condition, energy conservation and all boundary conditions can be established. By applying the analytical method and integral-approximation method, the solid and liquid phase temperature distributions are obtained and found to be a function of time and location. The interface of solid and liquid phase is also derived. The results are compared with the other published data. In addition, the dynamics process of pulsed laser deposition of KTN (Kta0.65Nb0.35O3) thin film is simulated in detail by using fluid dynamics theory. By combining the expression of the target ablation ratio and the dynamic equation and by using the experimental data, the effects of laser action parameters on the thickness distribution of thin film and on the thin film component characteristics are discussed. The results are in good agreement with the experimental data.展开更多
文摘Using the Sol-Gel method to produce the KTN ultrafine powder and the sintering technique with K2O atmosphere to prepare KTN ceramics as the targets instead of the KTN single crystal, highly oriented KTN thin films were produced on the transparent single crystal quartz (100) by the pulsed laser deposition (PLD). Since the thermal stress sustained by the quartz is relatively small, the limit temperature of the quartz substrates(300℃) is much lower than that of the P-Si substrates (560℃); the prepared thin film is at amorphous state. Increasing the pulsed laser energy density in the process incorporated with annealing the film after deposition at different temperatures converts the amorphous films into crystal. The optimal pulsed laser energy density and annealing temperature were 2.0 J/cm2 and 600℃, respectively. A discussion was made to understand the mechanism of film production at relatively low substrate temperature by PLD and effects of the annealing temperatures on the forming of the perovskite phase, and optimal conditions for the orientation of the crystal grain.
文摘1 Introduction The Sol-Gel process has received a great deal of attention, primarily because it can offer many advantages over the conventional process, such as high purity, molecular-level homogeneity, easier composition control and reduced processing temperature. These advantages make Sol-Gel process become one of the promising fabrication methods for ferroelectric ceramics. Sol-Gel-derived thin films of BaTiO<sub>3</sub>, PbTiO<sub>3</sub>, Pb (Zr, Ti)O<sub>3</sub>, PLZT and others have all been reported, but there is little information relating to the potential
文摘An ablation model of targets irradiated by pulsed laser is established. By using the simple energy balance conditions, the relationship between ablation surface location and time is derived. By an adiabatic approximation, the continuous-temperature condition, energy conservation and all boundary conditions can be established. By applying the analytical method and integral-approximation method, the solid and liquid phase temperature distributions are obtained and found to be a function of time and location. The interface of solid and liquid phase is also derived. The results are compared with the other published data. In addition, the dynamics process of pulsed laser deposition of KTN (Kta0.65Nb0.35O3) thin film is simulated in detail by using fluid dynamics theory. By combining the expression of the target ablation ratio and the dynamic equation and by using the experimental data, the effects of laser action parameters on the thickness distribution of thin film and on the thin film component characteristics are discussed. The results are in good agreement with the experimental data.