Water resource access in the Nouhao sub-basin, assessed based on the availability of drinking water mobilization facilities, the availability of water for uses and the quality of drinking water, revealed that in 2017 ...Water resource access in the Nouhao sub-basin, assessed based on the availability of drinking water mobilization facilities, the availability of water for uses and the quality of drinking water, revealed that in 2017 the basin was covered by 1249 modern water point, main drinking water sources. On average, the sub-basin shows a ratio of 271 users per drinking water point. Communal level shows some disparity with Bittou recording the highest number of people per drinking water point, i.e., around 537. Water that can be captured in the entire sub-basin meets only 42% of the total water needs from the three mains uses: irrigation, domestic consumption and livestock. The highest demander among these uses is Irrigation with 75% of the need, i.e., approximately 12,859,995 m<sup>3</sup>. Water in 33% drinking sources of this sub basin is of poor quality. Arsenic, one of the quality parameters studied, is found in some communes of the sub-basin. 11% of the water points in Bissiga are arsenic polluted making this commune the most arsenic contaminated location. The vulnerability maps deducted from lack of water for uses;lack of drinking water works and poor water quality shows so, the exposure level of the sub-basin’ communes to some potential risks related to low water resources access.展开更多
River flow in the Songwe sub-basin is predicted to alter due to climate change, which would have an impact on aquatic habitats, infrastructure, and people’s way of life. Therefore, the influence of climate change sho...River flow in the Songwe sub-basin is predicted to alter due to climate change, which would have an impact on aquatic habitats, infrastructure, and people’s way of life. Therefore, the influence of climate change should be taken into account when making decisions about the sustainable management of water resources in the sub-basin. This study looked into how river discharge would react to climate change in the future. By contrasting hydrological characteristics simulated under historical climate (1981-2010) with projected climate (2011-2040, 2041-2070, and 2071-2100) under two emission scenarios, the effects of climate change on river flow were evaluated (RCP 4.5 and RCP 8.5). The ensemble average of four CORDEX regional climate models was built to address the issue of uncertainty introduced by the climate models. The SWAT model was force-calibrated using the results from the generated ensemble average for the RCP 4.5 and RCP 8.5 emission scenarios in order to mimic the river flow during past (1981-2010) and future (2011-2100) events. The increase in river flows for the Songwe sub-basin is predicted to be largest during the rainy season by both the RCP 4.5 and RCP 8.5 scenarios. Under RCP 8.5, the abrupt decrease in river flow is anticipated to reach its maximum in March 2037, when the discharge will be 44.84 m<sup>3</sup>/sec, and in March 2027, when the discharge will be 48 m<sup>3</sup>/sec. The extreme surge in river flow will peak, according to the RCA4, in February 2023, in April 2083 under RCP 4.5, and, according to the CCLM4 and RCA4, in November 2027 and November 2046, respectively. The expected decrease and increase in river flow throughout both the dry and wet seasons may have an impact on the management of the sub-water basin’s resources, biodiversity, and hydraulic structures. The right adaptations and mitigation strategies should be adopted in order to lessen the negative consequences of climate change on precipitation, temperature, and river flow in the sub-basin.展开更多
Migration fractionation diagnosis is complicated in rifted basins where migration distance is generally short and lateral migration in sandy beds and vertical migration along faults are co-existed. Quantitative data f...Migration fractionation diagnosis is complicated in rifted basins where migration distance is generally short and lateral migration in sandy beds and vertical migration along faults are co-existed. Quantitative data from GC-MS analysis makes it possible to distinguish lateral and vertical migration effects. Oils discovered from the Jiaolige oilfield, eastern Lujiapu Depression are derived from single source rock with similar maturity, which is an ideal case to study the migration fractionation effects. Compositional differences among oils are largely caused by the migration fractionation either laterally in sand beds or vertically along the faults. Subtle maturity differences are assessed by the classic saturated hydrocarbon parameters which have certain influence on nitrogen compounds. In a certain maturity range, the ratios of shield and semi-shield isomers to the exposed isomers of alkylcarbazoles change with maturity in an opposite direction with migration fractionation, which may conceal the migration influence. However, migration and maturation have the same effects on absolute concentrations of alkylated carbazoles and benzocarbazole [a]/([a]+[c]) ratios, which provides an ideal tool for migration direction assessment. Continuous variations among different samples reflect increased migration distance in sandy beds, while abrupt changes may indicate the change of migration conduit systems. Integrated both geochemical interpretation and geological constrains, not only migration direction can be determined, but also the conduit systems through the sandy beds or the faults can be recognized.展开更多
Kailu Basin in which the Western Lujiapu Depression is located is a typical continental rift basin.Biomarker parameters of the oils indicate that depositional facies and environments vary between the Bao 1 and Bao 14 ...Kailu Basin in which the Western Lujiapu Depression is located is a typical continental rift basin.Biomarker parameters of the oils indicate that depositional facies and environments vary between the Bao 1 and Bao 14 fault blocks with a higher saline environment in the Bao 1 fault block, but such difference has no significant impact on carbazole abundance and distribution.Maturity and migration distance are the main controls on carbazole abundance and distribution in the Western Lujiapu Depression.The commonly used migration indices,such as ratios of nitrogen shield isomers to nitrogen exposed isomers(1-/4-methylcarbazole ratio,1,8-/2,4-dimethylcarbazole(DMC) ratio and half-shield/exposed-DMC ratio),absolute concentrations of alkylated carbazoles and BC ratio(=benzo [a]carbazole/(benzo[a]carbazole+benzo[c]carbazole)) increase at the low mature range and decrease at a higher mature range with increasing maturity.At relatively low maturity stage(Rc〈0.77%), maturation has reversal effects with migration on the ratios of nitrogen shield isomers to nitrogen exposed isomers,which may cover migration influence and makes these parameters fail to indicate migration effects.Valid migration indicators at this maturity stage are concentrations of alkylated carbazoles and BC ratios,which can provide ideal tools for migration direction assessment even within short migration distance.Maturity effects should be taken into account when carbazole compounds are applied to indicate migration direction,and at different maturity stages,these commonly used parameters have different validity in tracing migration direction.Coupled with our previous study in the Eastern Lujiapu Depression,a conceptual model of the variation of nitrogen migration indices can be established for terrestrial rifted basins,that is,strong fractionation lateral migration model through sandy beds,weak fractionation vertical migration model along faults,and maturity impacts on migration assessment.展开更多
Based on the interpretations of three seismic profiles and one wide-angle seismic profile across the Northwest Sub-basin,South China Sea.stratigraphic sequences,deformation characteristics and an extension model for t...Based on the interpretations of three seismic profiles and one wide-angle seismic profile across the Northwest Sub-basin,South China Sea.stratigraphic sequences,deformation characteristics and an extension model for this sub-basin have been worked out.Three tectonic-stratigraphic units are determined.Detailed analyses of extension show that the event occurred mainly during the Paleogene and resulted in the formation of half-grabens or grabens distributed symmetrically around the spreading center.Sediments are characterized by chaotic and discontinuous reflectors,indicating clastic sediments. Farther to the southwest,the sub-basin features mainly continental rifting instead of sea-floor spreading. The rifting would have been controlled by the shape of the massif and developed just along the northern edge of the Zhongsha-Xisha Block,rather than joined the Xisha Trough.After 25 Ma.a southward ridge jump triggered the opening of the Southwest Sub-basin.The NW-directed stress caused by the sea-floor spreading of the Northwest Sub-basin may have prevented the continuous opening of the sub-basin.After that the Northwest Sub-basin experienced thermal cooling and exhibited broad subsidence.The deep crustal structure shown by the velocity model from a wide-angle seismic profile is also symmetrical around the spreading center,which indicates that the Northwest Sub-basin might have opened in a pure shear model.展开更多
Hydro-chemical characteristics of groundwater and their changes as affected by human activities were studied in the Ejin Sub-Basin of the Inner Mongolia Autonomous Region, China, to understand the groundwater evolutio...Hydro-chemical characteristics of groundwater and their changes as affected by human activities were studied in the Ejin Sub-Basin of the Inner Mongolia Autonomous Region, China, to understand the groundwater evolution, to identify the predominant geochemical processes taking place along the horizontal groundwater flow path, and to characterize anthropogenic factors affecting the groundwater environment based on previous data. The concentrations of major ions and total dissolved solids (TDS) in the groundwater showed a great variation, with 62.5% of the samples being brackish (TDS ≥ 1 000 mg L^-l). The groundwater system showed a gradual hydro-chemical zonation composed of Na^+ -HCO3^-, Na^+ -Mg^2+ -SO4 ^2 -Cl^-, and Na^+ -Cl^-. The relationships among the dissolved species allowed identification of the origin of solutes and the processes that generated the observed water compositions. The dissolution of halite, dolomite, and 2- gypsum explained, in part, the presence of Na^+, K^+, Cl^-, SO^4 , and Ca^2+, but other processes, such as mixing, Na^+ exchange for Ca^2+ and Mg^2+, and calcite precipitation also contributed to the composition of water. Human activity, in particular large-scale water resources development associated with dramatic population growth in the last 50 years, has led to tremendous changes in the groundwater regime, which reflected in surface water runoff change, decline of groundwater table and degeneration of surface water and groundwater quality. Solving these largely anthropogenic problems requires concerted, massive and long-term efforts.展开更多
Drought is a natural phenomenon posing severe implications for soil,groundwater and agricultural yield.It has been recognized as one of the most pervasive global change drivers to affect the soil.Soil being a weakly r...Drought is a natural phenomenon posing severe implications for soil,groundwater and agricultural yield.It has been recognized as one of the most pervasive global change drivers to affect the soil.Soil being a weakly renewable resource takes a long time to form,but it takes no time to degrade.However,the response of soil to drought conditions as soil loss is not manifested in the existing literature.Thus,this study makes a concerted effort to analyze the relationship between drought conditions and soil erosion in the middle sub-basin of the Godavari River in India.MODIS remote sensing data was utilized for driving drought indices during 2000-2019.Firstly,we constricted Temperature condition index(TCI)and Vegetation Condition Index(VCI)from Land Surface Temperature(LST)and Enhanced Vegetation Index(EVI)derived from MODIS data.TCI and VCI were then integrated to determine the Vegetation Health Index(VHI).Revised Universal Soil Loss Equation(RUSLE)was utilized for estimating soil loss.The relationship between drought condition and vegetation was ascertained using the Pearson correlation.Most of the northern and southern watersheds experienced severe drought condition in the sub-basin during2000-2019.The mean frequency of the drought occurrence was 7.95 months.The average soil erosion in the sub-basin was estimated to be 9.88 t ha^(-1)year^(-1).A positive relationship was observed between drought indices and soil erosion values(r value being 0.35).However,wide variations were observed in the distribution of spatial correlation.Among various factors,the slope length and steepness were found to be the main drivers of soil erosion in the sub-basin.Thus,the study calls for policy measures to lessen the impact of drought and soil erosion.展开更多
Ethiopia is also frequently identified as a country that is highly vulnerable to climate variability and change. The potential adverse effects of climate change on Ethiopia’s agricultural sector are a major concern, ...Ethiopia is also frequently identified as a country that is highly vulnerable to climate variability and change. The potential adverse effects of climate change on Ethiopia’s agricultural sector are a major concern, particularly given the country’s dependence on agricultural production, which is sensitive to climate change and variability. This problem calls the need to understand agroecology based vulnerability to climate change and variability to better adapt to climate risks and promote strategies for local communities so as to enhance food security. The objective of this study is to estimate and compare the level of vulnerability of smallholder farmers’ to climate change and variability from three agroecology representing Muger River sub-Basin of the upper Blue Nile basin using Livelihood Vulnerability Index. The research used quantitative and qualitative data collected through Focussed Group Discussions, key informant interviews and a questionnaire survey of 442 sampled households across three different agro-ecologies in the sub-basin. The results reveal that along with the different agro-ecological zone, households and communities experienced different degrees of climate vulnerability. These differences are largely explained by differences in exposure, sensitivity and adaptive capacity of smallholder farmers. The livelihood vulnerability analysis reveals that Kolla agroecology exhibits relatively low adaptive capacity, higher sensitivity and higher exposure to climate change and variability that is deemed to be the most vulnerable agroecology. These contributing factors to a vulnerability in Kolla agroecology are largely influenced by assets, livelihood diversification, innovation, infrastructure, socio-demographic factors, social capital, agriculture, food security, and natural disasters and climate variability. The result furthermore shows that Dega agroecology has least vulnerable owing to its higher adaptive capacity. These results suggest that designing agroecology based resilience-building adaptation strategies is crucial to reduce the vulnerability of smallholder farmers to climate change and variability.展开更多
A new gravity survey was carried out in the northern part of the onshore Kribi- Campo sub-basin in Cameroon. The data were incorporated to the existing ones and then analyzed and modeled in order to elucidate the subs...A new gravity survey was carried out in the northern part of the onshore Kribi- Campo sub-basin in Cameroon. The data were incorporated to the existing ones and then analyzed and modeled in order to elucidate the subsurface structure of the area. The area is characterized in its north-western part by considerably high positive anomalies indicative of the presence of a dense intrusive body. We find, 1) from the analysis of the gravity residual anomaly map, the high positive anomalies observed are the signature of a shallow dense structure;2) from the multi-scale analysis of the maxima of the horizontal gradient, the structure is confined between depths of 0.5 km and 5 km;3) from the quantitative interpretation of residual anomalies by spectral analysis, the depth to the upper surface of the intrusive body is not uniform, the average depth of the bottom is h1 = 3.6 km and the depths to particular sections of the roof of the intrusion are h2 = 1.6 km and h3 = 0.5 km;4) and the 3D modeling gives results that are suggestive of the presence of contacts between rocks of different densities at different depths and a dense intrusive igneous body in the upper crust of the Kribi zone. From the 3D model the dense intrusive igneous block is surrounded by sedimentary formations to the south-west and metamorphic formations to the north-east. Both formations have a density of about 2.74 g/cm3. The near surface portions of this igneous block lie at a depth range of 0.5 km to 1.5 km while its lower surface has a depth range of 3.6 km to 5.2 km. The shape of the edges and the bottom of the intrusive body are suggestive of the fact that it forms part of a broader structure underlying the Kribi-Campo sub-basin with a great influence on the sedimentary cover.展开更多
Geochemical data of fifteen Cretaceous sediment samples from Kumba area in the Douala sub-basin are presented to determine the provenance, source rock weathering, tectonic setting and paleo-oxidation conditions of the...Geochemical data of fifteen Cretaceous sediment samples from Kumba area in the Douala sub-basin are presented to determine the provenance, source rock weathering, tectonic setting and paleo-oxidation conditions of the depositional setting of these rocks. For this purpose, the whole-rocks were analyzed for their major and trace element, including rare earth elements (REEs), contents by ICP-AES and ICP-MS methods respectively. On the basis of their major element composition, the rocks have been classified mainly as Fe-shale, shale, arkose and Fe-sandstone. For the provenance, the plot of Zr vs. TiO2, Y/Ni vs. Cr/V, TiO2 vs. Al2O3 diagrams, high LREE/HREE ratios (5.84 to 20.91) and negative and positive Eu anomalies (Eu/Eu*= 0.87 to 1.62) suggest that the studied rocks were mainly derived from felsic igneous rocks with lesser contribution of mafic components. The higher values of paleo-weathering indices such as Plagioclase Index of Alteration (PIA) and Chemical Index of Weathering (CIW), ranging from 79.63 to 99.90 and 87.57 to 99.92 respectively, suggest that the sediments and their potential source rocks experienced intense weathering. Whereas the variable Chemical Index of Alteration (CIA) values (63.01 to 99.50) coupled with high content of K2O (up to 7.5) in most samples could be indicative of K-addition diagenetic processes. The A-CN-K plot also suggests a possible K-addition. The redox conditions during the sedimentation were suboxic to oxic as evidenced by the Ce anomalies of 0.88 to 1.03. This is also confirmed by the values of Ni/Co (less than 7), U/Th (less than 1.25) and Cu/Zn (mostly less than 1). Tectonic discrimination diagrams (e.g., SiO2-K2O/Na2O and Th-Sc-Zr/10) show that these rocks were deposited mainly in an active continental margin setting, and in various tectonic environments. This reflects probably the recycling effect experienced by the samples studied.展开更多
The aim of this research work was to report a facies analysis of the N’Kappa formation, identified the clay minerals present in those facies and evaluate their oil potential. For that to be done, Lithostratigraphic d...The aim of this research work was to report a facies analysis of the N’Kappa formation, identified the clay minerals present in those facies and evaluate their oil potential. For that to be done, Lithostratigraphic descriptions were performed on three natural outcrops chosen in three different localities of the northern border of Douala sedimentary basin. Ten shaly samples were then collected on those outcrops and submit to X ray diffraction and Rock-Eval pyrolysis. Lithologically, the N’Kappa formation is made up of dark to grey shales and fine to coarse sandtones. The mineralogic content of the shales is made up of Kaolinite, dickite, low quartz and vaterite. Those shaly facies present high amount of immature organic matter (average TOC content around 2%). The petroleum potential is fair to poor (average S2 for all the samples around 3.33 mg HC/g of rock) though some samples (M1 and M2) presenting a good petroleum potential up to 6.62 kg HC/t of rock and 6.44 kg HC/t of rock respectively. They have undergone a low degree of diagenesis (early to burying diagenesis). This is evidenced by the predominance of kaolinite and dickite, low quartz and vaterite which are minerals stable at low temperature.展开更多
There are some factors, such as the topographic relief, sedimentary thickness and thermal conductivity, magmatic activity and thermal cooling, influencing the seafloor heat flow and the evolution of lithosphere struct...There are some factors, such as the topographic relief, sedimentary thickness and thermal conductivity, magmatic activity and thermal cooling, influencing the seafloor heat flow and the evolution of lithosphere structure in southwest sub-basin (SWSB), South China Sea. On the base of the geological structure characteristic of SWSB this paper will discuss some other factors including thermal anomaly area, dike produced by magma intrusion and lithosphere relief, by modeling and calculating. Calculating results indicate partial areas where temperature is higher than vicinity in the lithosphere, which we call thermal anomaly here containing thermal anomaly area and dike in this paper, could decrease heat flow below, increase above, and gradually increase to two sides; heat flow in upwelling parts of lithosphere is usually higher than sinking parts, and in the middle is of a gradual transition.展开更多
Urbanization in modern times led to a series of development strategies that brought new opportunities in China. Rapid urbanization caused severe stress to the ecosystems and the environment. Using the center-of-gravit...Urbanization in modern times led to a series of development strategies that brought new opportunities in China. Rapid urbanization caused severe stress to the ecosystems and the environment. Using the center-of-gravity(COG) method and parameters such as population, economy, and land, we studied the urbanization pattern in Songhua River Basin and its southern source sub-basin from 1990 to 2010. Urbanization was analyzed based on the COG position, eccentric distance, movement direction of COG, and distance of COG movement. Various characteristics of urbanization in the southern source sub-basin of the Songhua River were explained in relation to the whole Songhua River Basin. Urbanization in the southern source sub-basin of the Songhua River is balanced, relatively advanced, and stable compared to the whole Songhua River Basin. The average eccentric distance between the urbanization COGs in the Songhua River′s south source basin indicated rapid expansion of land urbanization during the span of this study. A basic pattern of urbanization COG in the whole Songhua Basin was observed, but there existed differences among the three aspects of urbanization process. Land urbanization is still in its active stage, so future studies should focus on analysis of such urbanization trends.展开更多
The clastic rocks in the depth of 2800-6000 m of the Paleogene in Jiyang sub-basin had undergone the middle diagenesis and late diagenesis.The reservoirs in main areas of the sub-basin developed 2-6 secondary pores zo...The clastic rocks in the depth of 2800-6000 m of the Paleogene in Jiyang sub-basin had undergone the middle diagenesis and late diagenesis.The reservoirs in main areas of the sub-basin developed 2-6 secondary pores zones.The reservoirs in the stage A of middle diagenesis of Bonan fault zone in Zhanhua depression and of the gentle slope belt of Chezhen depression are controlled by the acidic diagenetic medium and developed one secondary pores zone in each diagenetic sub-stage respectively.The contents ofautogenic quartz,pyrite and kaolinite are quite high in these reservoirs.The reservoirs’展开更多
In order to produce a more detailed structural and geometrical information, and determine sediments thickness along the Kribi-Campo sub-basin, statistical spectral analysis and horizontal gradient analysis of residual...In order to produce a more detailed structural and geometrical information, and determine sediments thickness along the Kribi-Campo sub-basin, statistical spectral analysis and horizontal gradient analysis of residual anomalies coupled with the Euler deconvolution approach were applied on the gravity data in the area. The results obtained from the 2D spectral analysis on anomaly grids gave a depth to the basement rocks of the basin from 0.60 km to 3.93 km. This represents the thickness of the sedimentary formations overlying the basement. The interpretation of the spectral analysis results indicated that the potential hydrocarbon field areas are situated between Kribi and Lolabe and at Campo given that those areas have the highest sedimentary thicknesses values. From the analysis of the horizontal gradient, deep faults mainly striking SW-NE have been traced and a structural map of the area has been produced. By applying the Euler deconvolution method to the gravity data, information about the depth and trend of the main subsurface structures have been obtained.展开更多
This paper presents a robust kinematic model that describes northern Red Sea and Gulf of Suez rifting and the development of marginal extensional half-graben sub-basins (ESB). A combination of Landsat Enhanced Themati...This paper presents a robust kinematic model that describes northern Red Sea and Gulf of Suez rifting and the development of marginal extensional half-graben sub-basins (ESB). A combination of Landsat Enhanced Thematic Mapper Plus (ETM+) and structural data was used to provide model constraints on the development of rift segments and ESB in the active rift zones. Structural analysis shows rotation and change in strike of rift-bounding faults. The model describes the northern Red Sea region as a poly-phase rift system initiated by late Oligocene (30 - 24 Ma) orthogonal rifting and the development of marginal ESB (now inland ESB), followed by oblique rifting and flank uplift during the early Miocene (24 - 18 Ma). The oblique rifting fragmented the rift depression into segments separated by oblique-slip accommodation within reactivated Pan-African (ca. 600 Ma) fracture zones, resulting in the development of antithetic faults and an en-echelon distribution of inland ESB. The current phase of rifting was instigated by the development of the Dead Sea Transform in response to increased northeasterly extension during the middle Miocene (ca. 18 Ma). The model explains the widening of the Red Sea rift during the last phase more than the Gulf of Suez rift by developing more antithetic faults and formation of offshore ESB, and deepening the rift depression.展开更多
Gravity data have been processed in the Douala sedimentary sub-basin in a section consisting of a set of 116 gravity data points located between latitudes 3°03'N and 4°06'N and longitudes 9°00...Gravity data have been processed in the Douala sedimentary sub-basin in a section consisting of a set of 116 gravity data points located between latitudes 3°03'N and 4°06'N and longitudes 9°00'E and 10°00'E. The established Bouguer anomaly fields and the Residual anomaly fields, extracted by upward continuation at an optimum height of 30 km, were both characterized by considerably high positive anomalies. These anomalies showed many ring-like positive gravity anomaly contour lines in the study region. Gravity gradients were analysed using the multi-scale horizontal derivative of the vertical derivative (MSHDVD) method, and this excluded the existence of fault lines across this region. Amplitude spectrum was used to estimate the potential field source at a depth of about 4.8 km. The ideal body theory capable of handling sparse data contaminated with noise was applied along a 50.2 km WWS-EEN profile to determine a density contrast of 0.266 g/cm3. Using these results as constraints, 2.5 D modelling carried out along this profile presented two major blocks with density contrast of 0.266 g/cm3. The first block is probably an intrusive igneous body with a density of about 2.77 g/cm3 , having an average thickness of about 26 km with its top and base lying at depths of about 4.25 km and 30.25 km respectively. The second block is likely a pillar of igneous material, located at a depth of about 10.77 km with a density of about 2.77 g/cm3 whose base goes deep down beyond the crust-mantle boundary. These results support previous findings that there are similarities between the Douala sedimentary sub-basin and the coastal sedimentary basin of Mauritania-Senegal and thus foster the suggestions of a more extensive movement that would have affected the whole of the West African coast.展开更多
Gravity studies have been carried out in the Douala sub-basin which is a sedimentary basin located both onshore and offshore on the South coast of Cameroon between latitudes 3°03'N and 4°06'N and lon...Gravity studies have been carried out in the Douala sub-basin which is a sedimentary basin located both onshore and offshore on the South coast of Cameroon between latitudes 3°03'N and 4°06'N and longitudes 9°00' and 10°00'E, covering a total surface area of 12,805 km2. On its onshore portion, the Douala sub-basin has a trapezoic shape and covers a total surface area of about 6955 km2 while the offshore part covers an area of about 5850 km2. Gravity data used in this study are constituted of 912 gravity data points located between longitudes 8°10.2' to 10°59.4'E and latitudes 2°30.6' to 4°59.4'N and the study area is located to the NW section of the onshore portion of the Douala sub-basin. This study area is characterised by considerably high positive anomalies attaining peak values of about 104.1 mGals at longitude 9°9.9' and latitude 4°1.1' with contour lines which are mostly oriented in the NNE direction. Residual anomalies were extracted by upward continuation of the Bouguer anomaly field at an optimum height of 30 km. This residual field and those obtained by the separation of polynomial of order 4 had a very high correlation coefficient factor of 0.979. The multi-scale horizontal derivative of the vertical derivative (MSHDVD) method was applied on the extracted residual anomalies for the delimitation of possible contacts in the source while the amplitude spectrum was used to estimate the depth to the top of the potential field source. The MSHDVD method did not delimite any clear cut contacts in the source but the amplitude spectrum estimated the potential field source at a depth of about 4.8 km. The ideal body theory was used to determine the density contrast along a 65 km NW-SE profile yielding a value of 0.266 g/cm3. 2.5D modelling aimed at bringing out the underlying structural layout of this study area presents a source body which is very probably an intrusive igneous block surrounded by sedimentary formations and having a density of 2.77 g/cm3 at a depth of about 5.88 km below the surface and an average thickness of about 26.95 km.展开更多
文摘Water resource access in the Nouhao sub-basin, assessed based on the availability of drinking water mobilization facilities, the availability of water for uses and the quality of drinking water, revealed that in 2017 the basin was covered by 1249 modern water point, main drinking water sources. On average, the sub-basin shows a ratio of 271 users per drinking water point. Communal level shows some disparity with Bittou recording the highest number of people per drinking water point, i.e., around 537. Water that can be captured in the entire sub-basin meets only 42% of the total water needs from the three mains uses: irrigation, domestic consumption and livestock. The highest demander among these uses is Irrigation with 75% of the need, i.e., approximately 12,859,995 m<sup>3</sup>. Water in 33% drinking sources of this sub basin is of poor quality. Arsenic, one of the quality parameters studied, is found in some communes of the sub-basin. 11% of the water points in Bissiga are arsenic polluted making this commune the most arsenic contaminated location. The vulnerability maps deducted from lack of water for uses;lack of drinking water works and poor water quality shows so, the exposure level of the sub-basin’ communes to some potential risks related to low water resources access.
文摘River flow in the Songwe sub-basin is predicted to alter due to climate change, which would have an impact on aquatic habitats, infrastructure, and people’s way of life. Therefore, the influence of climate change should be taken into account when making decisions about the sustainable management of water resources in the sub-basin. This study looked into how river discharge would react to climate change in the future. By contrasting hydrological characteristics simulated under historical climate (1981-2010) with projected climate (2011-2040, 2041-2070, and 2071-2100) under two emission scenarios, the effects of climate change on river flow were evaluated (RCP 4.5 and RCP 8.5). The ensemble average of four CORDEX regional climate models was built to address the issue of uncertainty introduced by the climate models. The SWAT model was force-calibrated using the results from the generated ensemble average for the RCP 4.5 and RCP 8.5 emission scenarios in order to mimic the river flow during past (1981-2010) and future (2011-2100) events. The increase in river flows for the Songwe sub-basin is predicted to be largest during the rainy season by both the RCP 4.5 and RCP 8.5 scenarios. Under RCP 8.5, the abrupt decrease in river flow is anticipated to reach its maximum in March 2037, when the discharge will be 44.84 m<sup>3</sup>/sec, and in March 2027, when the discharge will be 48 m<sup>3</sup>/sec. The extreme surge in river flow will peak, according to the RCA4, in February 2023, in April 2083 under RCP 4.5, and, according to the CCLM4 and RCA4, in November 2027 and November 2046, respectively. The expected decrease and increase in river flow throughout both the dry and wet seasons may have an impact on the management of the sub-water basin’s resources, biodiversity, and hydraulic structures. The right adaptations and mitigation strategies should be adopted in order to lessen the negative consequences of climate change on precipitation, temperature, and river flow in the sub-basin.
文摘Migration fractionation diagnosis is complicated in rifted basins where migration distance is generally short and lateral migration in sandy beds and vertical migration along faults are co-existed. Quantitative data from GC-MS analysis makes it possible to distinguish lateral and vertical migration effects. Oils discovered from the Jiaolige oilfield, eastern Lujiapu Depression are derived from single source rock with similar maturity, which is an ideal case to study the migration fractionation effects. Compositional differences among oils are largely caused by the migration fractionation either laterally in sand beds or vertically along the faults. Subtle maturity differences are assessed by the classic saturated hydrocarbon parameters which have certain influence on nitrogen compounds. In a certain maturity range, the ratios of shield and semi-shield isomers to the exposed isomers of alkylcarbazoles change with maturity in an opposite direction with migration fractionation, which may conceal the migration influence. However, migration and maturation have the same effects on absolute concentrations of alkylated carbazoles and benzocarbazole [a]/([a]+[c]) ratios, which provides an ideal tool for migration direction assessment. Continuous variations among different samples reflect increased migration distance in sandy beds, while abrupt changes may indicate the change of migration conduit systems. Integrated both geochemical interpretation and geological constrains, not only migration direction can be determined, but also the conduit systems through the sandy beds or the faults can be recognized.
基金Supported by Program for Changjiang Scholars and Innovative Research Team in University(IRT0864) for financial support of this work.
文摘Kailu Basin in which the Western Lujiapu Depression is located is a typical continental rift basin.Biomarker parameters of the oils indicate that depositional facies and environments vary between the Bao 1 and Bao 14 fault blocks with a higher saline environment in the Bao 1 fault block, but such difference has no significant impact on carbazole abundance and distribution.Maturity and migration distance are the main controls on carbazole abundance and distribution in the Western Lujiapu Depression.The commonly used migration indices,such as ratios of nitrogen shield isomers to nitrogen exposed isomers(1-/4-methylcarbazole ratio,1,8-/2,4-dimethylcarbazole(DMC) ratio and half-shield/exposed-DMC ratio),absolute concentrations of alkylated carbazoles and BC ratio(=benzo [a]carbazole/(benzo[a]carbazole+benzo[c]carbazole)) increase at the low mature range and decrease at a higher mature range with increasing maturity.At relatively low maturity stage(Rc〈0.77%), maturation has reversal effects with migration on the ratios of nitrogen shield isomers to nitrogen exposed isomers,which may cover migration influence and makes these parameters fail to indicate migration effects.Valid migration indicators at this maturity stage are concentrations of alkylated carbazoles and BC ratios,which can provide ideal tools for migration direction assessment even within short migration distance.Maturity effects should be taken into account when carbazole compounds are applied to indicate migration direction,and at different maturity stages,these commonly used parameters have different validity in tracing migration direction.Coupled with our previous study in the Eastern Lujiapu Depression,a conceptual model of the variation of nitrogen migration indices can be established for terrestrial rifted basins,that is,strong fractionation lateral migration model through sandy beds,weak fractionation vertical migration model along faults,and maturity impacts on migration assessment.
基金supported by the National Basic Research Program(973) of China (No.2007CB41170403)the National Natural Science Foundation of China(No.40806023)the Scientific Research Fund of the SIO,SOA(No.1404-10)
文摘Based on the interpretations of three seismic profiles and one wide-angle seismic profile across the Northwest Sub-basin,South China Sea.stratigraphic sequences,deformation characteristics and an extension model for this sub-basin have been worked out.Three tectonic-stratigraphic units are determined.Detailed analyses of extension show that the event occurred mainly during the Paleogene and resulted in the formation of half-grabens or grabens distributed symmetrically around the spreading center.Sediments are characterized by chaotic and discontinuous reflectors,indicating clastic sediments. Farther to the southwest,the sub-basin features mainly continental rifting instead of sea-floor spreading. The rifting would have been controlled by the shape of the massif and developed just along the northern edge of the Zhongsha-Xisha Block,rather than joined the Xisha Trough.After 25 Ma.a southward ridge jump triggered the opening of the Southwest Sub-basin.The NW-directed stress caused by the sea-floor spreading of the Northwest Sub-basin may have prevented the continuous opening of the sub-basin.After that the Northwest Sub-basin experienced thermal cooling and exhibited broad subsidence.The deep crustal structure shown by the velocity model from a wide-angle seismic profile is also symmetrical around the spreading center,which indicates that the Northwest Sub-basin might have opened in a pure shear model.
基金Project supported by the National Natural Science Foundation of China (Nos. 40671010 and 40501012).
文摘Hydro-chemical characteristics of groundwater and their changes as affected by human activities were studied in the Ejin Sub-Basin of the Inner Mongolia Autonomous Region, China, to understand the groundwater evolution, to identify the predominant geochemical processes taking place along the horizontal groundwater flow path, and to characterize anthropogenic factors affecting the groundwater environment based on previous data. The concentrations of major ions and total dissolved solids (TDS) in the groundwater showed a great variation, with 62.5% of the samples being brackish (TDS ≥ 1 000 mg L^-l). The groundwater system showed a gradual hydro-chemical zonation composed of Na^+ -HCO3^-, Na^+ -Mg^2+ -SO4 ^2 -Cl^-, and Na^+ -Cl^-. The relationships among the dissolved species allowed identification of the origin of solutes and the processes that generated the observed water compositions. The dissolution of halite, dolomite, and 2- gypsum explained, in part, the presence of Na^+, K^+, Cl^-, SO^4 , and Ca^2+, but other processes, such as mixing, Na^+ exchange for Ca^2+ and Mg^2+, and calcite precipitation also contributed to the composition of water. Human activity, in particular large-scale water resources development associated with dramatic population growth in the last 50 years, has led to tremendous changes in the groundwater regime, which reflected in surface water runoff change, decline of groundwater table and degeneration of surface water and groundwater quality. Solving these largely anthropogenic problems requires concerted, massive and long-term efforts.
文摘Drought is a natural phenomenon posing severe implications for soil,groundwater and agricultural yield.It has been recognized as one of the most pervasive global change drivers to affect the soil.Soil being a weakly renewable resource takes a long time to form,but it takes no time to degrade.However,the response of soil to drought conditions as soil loss is not manifested in the existing literature.Thus,this study makes a concerted effort to analyze the relationship between drought conditions and soil erosion in the middle sub-basin of the Godavari River in India.MODIS remote sensing data was utilized for driving drought indices during 2000-2019.Firstly,we constricted Temperature condition index(TCI)and Vegetation Condition Index(VCI)from Land Surface Temperature(LST)and Enhanced Vegetation Index(EVI)derived from MODIS data.TCI and VCI were then integrated to determine the Vegetation Health Index(VHI).Revised Universal Soil Loss Equation(RUSLE)was utilized for estimating soil loss.The relationship between drought condition and vegetation was ascertained using the Pearson correlation.Most of the northern and southern watersheds experienced severe drought condition in the sub-basin during2000-2019.The mean frequency of the drought occurrence was 7.95 months.The average soil erosion in the sub-basin was estimated to be 9.88 t ha^(-1)year^(-1).A positive relationship was observed between drought indices and soil erosion values(r value being 0.35).However,wide variations were observed in the distribution of spatial correlation.Among various factors,the slope length and steepness were found to be the main drivers of soil erosion in the sub-basin.Thus,the study calls for policy measures to lessen the impact of drought and soil erosion.
文摘Ethiopia is also frequently identified as a country that is highly vulnerable to climate variability and change. The potential adverse effects of climate change on Ethiopia’s agricultural sector are a major concern, particularly given the country’s dependence on agricultural production, which is sensitive to climate change and variability. This problem calls the need to understand agroecology based vulnerability to climate change and variability to better adapt to climate risks and promote strategies for local communities so as to enhance food security. The objective of this study is to estimate and compare the level of vulnerability of smallholder farmers’ to climate change and variability from three agroecology representing Muger River sub-Basin of the upper Blue Nile basin using Livelihood Vulnerability Index. The research used quantitative and qualitative data collected through Focussed Group Discussions, key informant interviews and a questionnaire survey of 442 sampled households across three different agro-ecologies in the sub-basin. The results reveal that along with the different agro-ecological zone, households and communities experienced different degrees of climate vulnerability. These differences are largely explained by differences in exposure, sensitivity and adaptive capacity of smallholder farmers. The livelihood vulnerability analysis reveals that Kolla agroecology exhibits relatively low adaptive capacity, higher sensitivity and higher exposure to climate change and variability that is deemed to be the most vulnerable agroecology. These contributing factors to a vulnerability in Kolla agroecology are largely influenced by assets, livelihood diversification, innovation, infrastructure, socio-demographic factors, social capital, agriculture, food security, and natural disasters and climate variability. The result furthermore shows that Dega agroecology has least vulnerable owing to its higher adaptive capacity. These results suggest that designing agroecology based resilience-building adaptation strategies is crucial to reduce the vulnerability of smallholder farmers to climate change and variability.
文摘A new gravity survey was carried out in the northern part of the onshore Kribi- Campo sub-basin in Cameroon. The data were incorporated to the existing ones and then analyzed and modeled in order to elucidate the subsurface structure of the area. The area is characterized in its north-western part by considerably high positive anomalies indicative of the presence of a dense intrusive body. We find, 1) from the analysis of the gravity residual anomaly map, the high positive anomalies observed are the signature of a shallow dense structure;2) from the multi-scale analysis of the maxima of the horizontal gradient, the structure is confined between depths of 0.5 km and 5 km;3) from the quantitative interpretation of residual anomalies by spectral analysis, the depth to the upper surface of the intrusive body is not uniform, the average depth of the bottom is h1 = 3.6 km and the depths to particular sections of the roof of the intrusion are h2 = 1.6 km and h3 = 0.5 km;4) and the 3D modeling gives results that are suggestive of the presence of contacts between rocks of different densities at different depths and a dense intrusive igneous body in the upper crust of the Kribi zone. From the 3D model the dense intrusive igneous block is surrounded by sedimentary formations to the south-west and metamorphic formations to the north-east. Both formations have a density of about 2.74 g/cm3. The near surface portions of this igneous block lie at a depth range of 0.5 km to 1.5 km while its lower surface has a depth range of 3.6 km to 5.2 km. The shape of the edges and the bottom of the intrusive body are suggestive of the fact that it forms part of a broader structure underlying the Kribi-Campo sub-basin with a great influence on the sedimentary cover.
文摘Geochemical data of fifteen Cretaceous sediment samples from Kumba area in the Douala sub-basin are presented to determine the provenance, source rock weathering, tectonic setting and paleo-oxidation conditions of the depositional setting of these rocks. For this purpose, the whole-rocks were analyzed for their major and trace element, including rare earth elements (REEs), contents by ICP-AES and ICP-MS methods respectively. On the basis of their major element composition, the rocks have been classified mainly as Fe-shale, shale, arkose and Fe-sandstone. For the provenance, the plot of Zr vs. TiO2, Y/Ni vs. Cr/V, TiO2 vs. Al2O3 diagrams, high LREE/HREE ratios (5.84 to 20.91) and negative and positive Eu anomalies (Eu/Eu*= 0.87 to 1.62) suggest that the studied rocks were mainly derived from felsic igneous rocks with lesser contribution of mafic components. The higher values of paleo-weathering indices such as Plagioclase Index of Alteration (PIA) and Chemical Index of Weathering (CIW), ranging from 79.63 to 99.90 and 87.57 to 99.92 respectively, suggest that the sediments and their potential source rocks experienced intense weathering. Whereas the variable Chemical Index of Alteration (CIA) values (63.01 to 99.50) coupled with high content of K2O (up to 7.5) in most samples could be indicative of K-addition diagenetic processes. The A-CN-K plot also suggests a possible K-addition. The redox conditions during the sedimentation were suboxic to oxic as evidenced by the Ce anomalies of 0.88 to 1.03. This is also confirmed by the values of Ni/Co (less than 7), U/Th (less than 1.25) and Cu/Zn (mostly less than 1). Tectonic discrimination diagrams (e.g., SiO2-K2O/Na2O and Th-Sc-Zr/10) show that these rocks were deposited mainly in an active continental margin setting, and in various tectonic environments. This reflects probably the recycling effect experienced by the samples studied.
文摘The aim of this research work was to report a facies analysis of the N’Kappa formation, identified the clay minerals present in those facies and evaluate their oil potential. For that to be done, Lithostratigraphic descriptions were performed on three natural outcrops chosen in three different localities of the northern border of Douala sedimentary basin. Ten shaly samples were then collected on those outcrops and submit to X ray diffraction and Rock-Eval pyrolysis. Lithologically, the N’Kappa formation is made up of dark to grey shales and fine to coarse sandtones. The mineralogic content of the shales is made up of Kaolinite, dickite, low quartz and vaterite. Those shaly facies present high amount of immature organic matter (average TOC content around 2%). The petroleum potential is fair to poor (average S2 for all the samples around 3.33 mg HC/g of rock) though some samples (M1 and M2) presenting a good petroleum potential up to 6.62 kg HC/t of rock and 6.44 kg HC/t of rock respectively. They have undergone a low degree of diagenesis (early to burying diagenesis). This is evidenced by the predominance of kaolinite and dickite, low quartz and vaterite which are minerals stable at low temperature.
文摘There are some factors, such as the topographic relief, sedimentary thickness and thermal conductivity, magmatic activity and thermal cooling, influencing the seafloor heat flow and the evolution of lithosphere structure in southwest sub-basin (SWSB), South China Sea. On the base of the geological structure characteristic of SWSB this paper will discuss some other factors including thermal anomaly area, dike produced by magma intrusion and lithosphere relief, by modeling and calculating. Calculating results indicate partial areas where temperature is higher than vicinity in the lithosphere, which we call thermal anomaly here containing thermal anomaly area and dike in this paper, could decrease heat flow below, increase above, and gradually increase to two sides; heat flow in upwelling parts of lithosphere is usually higher than sinking parts, and in the middle is of a gradual transition.
基金National Key Technologies R&D Program(No.2012BAD22B04)Talent Introduction Project of Jilin Province
文摘Urbanization in modern times led to a series of development strategies that brought new opportunities in China. Rapid urbanization caused severe stress to the ecosystems and the environment. Using the center-of-gravity(COG) method and parameters such as population, economy, and land, we studied the urbanization pattern in Songhua River Basin and its southern source sub-basin from 1990 to 2010. Urbanization was analyzed based on the COG position, eccentric distance, movement direction of COG, and distance of COG movement. Various characteristics of urbanization in the southern source sub-basin of the Songhua River were explained in relation to the whole Songhua River Basin. Urbanization in the southern source sub-basin of the Songhua River is balanced, relatively advanced, and stable compared to the whole Songhua River Basin. The average eccentric distance between the urbanization COGs in the Songhua River′s south source basin indicated rapid expansion of land urbanization during the span of this study. A basic pattern of urbanization COG in the whole Songhua Basin was observed, but there existed differences among the three aspects of urbanization process. Land urbanization is still in its active stage, so future studies should focus on analysis of such urbanization trends.
文摘The clastic rocks in the depth of 2800-6000 m of the Paleogene in Jiyang sub-basin had undergone the middle diagenesis and late diagenesis.The reservoirs in main areas of the sub-basin developed 2-6 secondary pores zones.The reservoirs in the stage A of middle diagenesis of Bonan fault zone in Zhanhua depression and of the gentle slope belt of Chezhen depression are controlled by the acidic diagenetic medium and developed one secondary pores zone in each diagenetic sub-stage respectively.The contents ofautogenic quartz,pyrite and kaolinite are quite high in these reservoirs.The reservoirs’
文摘In order to produce a more detailed structural and geometrical information, and determine sediments thickness along the Kribi-Campo sub-basin, statistical spectral analysis and horizontal gradient analysis of residual anomalies coupled with the Euler deconvolution approach were applied on the gravity data in the area. The results obtained from the 2D spectral analysis on anomaly grids gave a depth to the basement rocks of the basin from 0.60 km to 3.93 km. This represents the thickness of the sedimentary formations overlying the basement. The interpretation of the spectral analysis results indicated that the potential hydrocarbon field areas are situated between Kribi and Lolabe and at Campo given that those areas have the highest sedimentary thicknesses values. From the analysis of the horizontal gradient, deep faults mainly striking SW-NE have been traced and a structural map of the area has been produced. By applying the Euler deconvolution method to the gravity data, information about the depth and trend of the main subsurface structures have been obtained.
文摘This paper presents a robust kinematic model that describes northern Red Sea and Gulf of Suez rifting and the development of marginal extensional half-graben sub-basins (ESB). A combination of Landsat Enhanced Thematic Mapper Plus (ETM+) and structural data was used to provide model constraints on the development of rift segments and ESB in the active rift zones. Structural analysis shows rotation and change in strike of rift-bounding faults. The model describes the northern Red Sea region as a poly-phase rift system initiated by late Oligocene (30 - 24 Ma) orthogonal rifting and the development of marginal ESB (now inland ESB), followed by oblique rifting and flank uplift during the early Miocene (24 - 18 Ma). The oblique rifting fragmented the rift depression into segments separated by oblique-slip accommodation within reactivated Pan-African (ca. 600 Ma) fracture zones, resulting in the development of antithetic faults and an en-echelon distribution of inland ESB. The current phase of rifting was instigated by the development of the Dead Sea Transform in response to increased northeasterly extension during the middle Miocene (ca. 18 Ma). The model explains the widening of the Red Sea rift during the last phase more than the Gulf of Suez rift by developing more antithetic faults and formation of offshore ESB, and deepening the rift depression.
文摘Gravity data have been processed in the Douala sedimentary sub-basin in a section consisting of a set of 116 gravity data points located between latitudes 3°03'N and 4°06'N and longitudes 9°00'E and 10°00'E. The established Bouguer anomaly fields and the Residual anomaly fields, extracted by upward continuation at an optimum height of 30 km, were both characterized by considerably high positive anomalies. These anomalies showed many ring-like positive gravity anomaly contour lines in the study region. Gravity gradients were analysed using the multi-scale horizontal derivative of the vertical derivative (MSHDVD) method, and this excluded the existence of fault lines across this region. Amplitude spectrum was used to estimate the potential field source at a depth of about 4.8 km. The ideal body theory capable of handling sparse data contaminated with noise was applied along a 50.2 km WWS-EEN profile to determine a density contrast of 0.266 g/cm3. Using these results as constraints, 2.5 D modelling carried out along this profile presented two major blocks with density contrast of 0.266 g/cm3. The first block is probably an intrusive igneous body with a density of about 2.77 g/cm3 , having an average thickness of about 26 km with its top and base lying at depths of about 4.25 km and 30.25 km respectively. The second block is likely a pillar of igneous material, located at a depth of about 10.77 km with a density of about 2.77 g/cm3 whose base goes deep down beyond the crust-mantle boundary. These results support previous findings that there are similarities between the Douala sedimentary sub-basin and the coastal sedimentary basin of Mauritania-Senegal and thus foster the suggestions of a more extensive movement that would have affected the whole of the West African coast.
文摘Gravity studies have been carried out in the Douala sub-basin which is a sedimentary basin located both onshore and offshore on the South coast of Cameroon between latitudes 3°03'N and 4°06'N and longitudes 9°00' and 10°00'E, covering a total surface area of 12,805 km2. On its onshore portion, the Douala sub-basin has a trapezoic shape and covers a total surface area of about 6955 km2 while the offshore part covers an area of about 5850 km2. Gravity data used in this study are constituted of 912 gravity data points located between longitudes 8°10.2' to 10°59.4'E and latitudes 2°30.6' to 4°59.4'N and the study area is located to the NW section of the onshore portion of the Douala sub-basin. This study area is characterised by considerably high positive anomalies attaining peak values of about 104.1 mGals at longitude 9°9.9' and latitude 4°1.1' with contour lines which are mostly oriented in the NNE direction. Residual anomalies were extracted by upward continuation of the Bouguer anomaly field at an optimum height of 30 km. This residual field and those obtained by the separation of polynomial of order 4 had a very high correlation coefficient factor of 0.979. The multi-scale horizontal derivative of the vertical derivative (MSHDVD) method was applied on the extracted residual anomalies for the delimitation of possible contacts in the source while the amplitude spectrum was used to estimate the depth to the top of the potential field source. The MSHDVD method did not delimite any clear cut contacts in the source but the amplitude spectrum estimated the potential field source at a depth of about 4.8 km. The ideal body theory was used to determine the density contrast along a 65 km NW-SE profile yielding a value of 0.266 g/cm3. 2.5D modelling aimed at bringing out the underlying structural layout of this study area presents a source body which is very probably an intrusive igneous block surrounded by sedimentary formations and having a density of 2.77 g/cm3 at a depth of about 5.88 km below the surface and an average thickness of about 26.95 km.