Polypropylene was cracked thermally and catalytically in the presence of kaoline and silica alumina in a semi batch reactor in the temperature range 400℃~550℃ in order to obtain suitable liquid fuels.The dependenci...Polypropylene was cracked thermally and catalytically in the presence of kaoline and silica alumina in a semi batch reactor in the temperature range 400℃~550℃ in order to obtain suitable liquid fuels.The dependencies between process temperatures,types of catalyst,feed compositions and product yields of the obtained fuel fractions were found.It was observed that up to 450℃ thermal cracking temperature,the major product of pyrolysis was liquid oil and the major product at other higher temperatures(475℃~550℃) are viscous liquid or wax and the highest yield of pyrolysis product is 82.85% by weight at 500℃.Use of kaoline and silica alumina decreased the reaction time and increased the yield of liquid fraction.Again the major pyrolysis product in catalytic pyrolysis at all temperatures was low viscous liquid oil.Silica alumina was found better as compared to kaoline in liquid yield and in reducing the reaction temperature.The maximum oil yield using silica alumina and kaoline catalyst are 91% and 89.5% respectively.On the basis of the obtained results hypothetical continuous process of waste polypropylene plastics processing for engine fuel production can be presented.展开更多
Using X-ray diffraction (XRD) analysis and an electron-probe microanalyser (EPMA), this research found that the main independent mineral of titanium (Ti) in the kaoline of Songyi is anatase. The granularity of anatase...Using X-ray diffraction (XRD) analysis and an electron-probe microanalyser (EPMA), this research found that the main independent mineral of titanium (Ti) in the kaoline of Songyi is anatase. The granularity of anatase is from 0.5 μm to 1.5 μm, and some exceed 10 μm. This research provides important scientific evidence for the exploitation of the coal-measure kaoline in the South China.展开更多
This paper finds out distributive pattern of principal minerals in Jiepai kaoline and demonstrates the black matter to be not organic matter but fine scaly mica-hematite aggregate in black vein mud, the nanometer mine...This paper finds out distributive pattern of principal minerals in Jiepai kaoline and demonstrates the black matter to be not organic matter but fine scaly mica-hematite aggregate in black vein mud, the nanometer mineral-portlandite Ca(OH)(2) in this kaoline is discovered.展开更多
An acrylic acid/kaoline powder superabsorbent composite with a water absorbency of the superabsorbent composite about 1/800 was synthesized by inverse\|suspending polymerization reaction between acrylic acid monomer a...An acrylic acid/kaoline powder superabsorbent composite with a water absorbency of the superabsorbent composite about 1/800 was synthesized by inverse\|suspending polymerization reaction between acrylic acid monomer and kaoline ultrafine powder. The influence of the dispersant agent on the configuration of the products in the inverse suspension polymerization is investigated. The influences of the kaoline powder,cross\|linker,initiator,neutralization degree and the volume ratio of oil to water phase on the water absorbency of the superabsorbent composites are discussed in the paper.展开更多
To meet the rapidly increasing demand for energy and the dramatic depletion of conventional crude oil,it is imperative to utilize sour naphtha.With no coke being produced,oxidative desulfurization(ODS)of naphtha lower...To meet the rapidly increasing demand for energy and the dramatic depletion of conventional crude oil,it is imperative to utilize sour naphtha.With no coke being produced,oxidative desulfurization(ODS)of naphtha lowers its sulfur content and average molecular weight.In this article,we outline a method for heavy naphtha non-extractive ODS using a very stable catalyst.The technique involves the use of a solid catalyst with oxygen gas as the oxidant.This necessitated relatively high mixing intensities;hence a three-phase Oscillatory Baffled Reactor(OBR)was used.The catalyst was based on the zeolite ZSM-5,prepared from natural kaolin by a series of delamination and activation steps and impregnated with Fe.A TiO2 nanolayer was applied,using the sol-gel method,to prevent rapid deactivation.The reactor performance was evaluated to minimize the sulfur content in the naphtha fuel.Due to the protective coating,the sulfur conversion stabilized at 90%.The results of this work establish the use of natural clay-based catalysts in a continuous,three-phase ODS,particularly with regard to proving long-term stability.It also showed that modest ODS can be achieved using an environmentally friendly oxidant,at mild operating conditions,whilst maintaining stability.展开更多
This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and...This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles.展开更多
Cement-based materials are fundamental in the construction industry,and enhancing their properties is an ongoing challenge.The use of superabsorbent polymers(SAP)has gained significant attention as a possible way to i...Cement-based materials are fundamental in the construction industry,and enhancing their properties is an ongoing challenge.The use of superabsorbent polymers(SAP)has gained significant attention as a possible way to improve the performance of cement-based materials due to their unique water-absorption and retention properties.This study investigates the multifaceted impact of kaolin intercalation-modified superabsorbent polymers(K-SAP)on the properties of cement mortar.The results show that K-SAP significantly affects the cement mortar’s rheological behavior,with distinct phases of water absorption and release,leading to changes in workability over time.Furthermore,K-SAP alters the hydration kinetics,delaying the exothermic peak of hydration and subsequently modifying the heat release kinetics.Notably,K-SAP effectively maintains a higher internal relative humidity within the mortar,reducing the autogenous shrinkage behavior.Moreover,K-SAP can have a beneficial effect on pore structure and this can be ascribed to the internal curing effect of released water from K-SAP.展开更多
In the tropics, lowland rice cultivation is often confronted with the problem of iron toxicity. The solution proposed by research in general is the use of industrial silicon. However, the high cost of industrial silic...In the tropics, lowland rice cultivation is often confronted with the problem of iron toxicity. The solution proposed by research in general is the use of industrial silicon. However, the high cost of industrial silicon limits its adoption by farmers. A study was carried out in Zakogbeu;Center-West of Côte d’Ivoire, to assess the potential of kaolin to mitigate the effect of this soil constraint on the root of the rice plant. Five kaolin-based treatments were analyzed (T<sub>0 </sub>= 0 kg kaolin ha<sup>−</sup><sup>1</sup>, T<sub>1</sub> = 366 kg kaolin ha<sup>−</sup><sup>1</sup>, T<sub>2</sub> = 736 kg kaolin ha<sup>−</sup><sup>1</sup>, T<sub>3</sub> = 1097 kg kaolin ha<sup>−</sup><sup>1</sup> and T<sub>4</sub> = 1465 kg kaolin ha<sup>−</sup><sup>1</sup> are 0, 200, 400, 600 and 800 kg SiO<sub>2</sub> ha<sup>−</sup><sup>1</sup>) in a device in complete random blocks, with 5 repetitions. The results obtained show that kaolin supply increases the length of the root tissue as well as the number of branching of the root of the rice plant. Root tissue increased from 10 cm with T<sub>0</sub> treatment to more than 15 cm with treatment T<sub>4</sub>. The microscopic observation of the roots shows that in the treatment T<sub>0</sub>, the roots present only primary ramifications and the tertiary and quaternary ramifications are observed with the treatments T<sub>3</sub> and T<sub>4</sub>. The contribution of kaolin is an alternative to inhibit the effect of iron toxicity on the rice plant root development in iron toxicity condition.展开更多
In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy ef...In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy efficiency of various industrial applications by minimizing heat loss and temperature control. These panels function as silent protectors, aiding in reducing energy consumption and making things more sustainable and better for the environment. This is where composite materials come in;they are known for their lightweight nature, high strength-to-weight ratio, and excellent thermal insulation properties and have gained significant attention. Researchers are actively engaged in various studies aimed at enhancing these materials further. This research project focuses on the development of kaolin and glass fiber-reinforced composites for thermally insulating panels, to which natural strengthening materials like corn husk and bamboo fibers are added. The aim is to create cost-effective and efficient composite materials for thermal insulation applications by incorporating these components with a binder consisting of potassium silicate, hydroxide, and distilled water. This project involves conducting compression tests, bending tests, impact tests, thermal conductivity measurements, and microscopic analysis to evaluate the mechanical and thermal properties of the developed composites. The profound impact of these engineered composites on thermal insulation panels stands to revolutionize energy conservation efforts, offering a potent avenue to minimize heat loss and enhance overall energy efficiency across an array of industrial sectors.展开更多
As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime ca...As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime candidate for reinforcement. This woody plant offers inherent strengths, biodegradability, and abundant availability. Due to its high cellulose content, its low thermal conductivity establishes bamboo as a thermally resistant material. Its low thermal conductivity, enhanced by a NaOH solution treatment, makes it an excellent thermally resistant material. Researchers incorporated Hollow Glass Microspheres (HGM) and Kaolin fillers into the epoxy matrix to improve the insulating properties of bamboo composites. These fillers substantially enhance thermal resistance, limiting heat transfer. Various compositions, like (30% HGM + 25% Bamboo + 65% Epoxy) and (30% Kaolin + 25% Bamboo + 45% Epoxy), were compared to identify the most efficient thermal insulator. Using Vacuum Assisted Resin Transfer Molding (VARTM) ensures uniform distribution of fillers and resin, creating a structurally sound thermal barrier. These reinforced composites, evaluated using the TOPSIS method, demonstrated their potential as high-performance materials combating heat transfer, offering a promising solution in the battle against climate change.展开更多
The duck eggshell waste was developed to the novel desiccant that is friendly to human and environment.The calcium oxide(Ca O)and calcium chloride(CaCl_(2))as the calcium-based desiccants were prepared from eggshell w...The duck eggshell waste was developed to the novel desiccant that is friendly to human and environment.The calcium oxide(Ca O)and calcium chloride(CaCl_(2))as the calcium-based desiccants were prepared from eggshell waste.The Ca O desiccant derived from the eggshell waste sintering at 1300℃,while the CaCl_(2)desiccant was extracted from eggshell waste with the hydrochloric(HCl)solution at difierent concentrations from 5 to 30 wt%.The yield percentage of CaCl_(2)desiccant increased with increasing the HCl concentration to 25 wt%.The humidity adsorption behavior were investigated in the range of 75%-5%relative humidity.The results show the CaCl_(2)desiccant has the highest hydration rate.The porous host from the kaolin was sintered at different temperatures from 200 to 1000℃and incorporated with 30%w/v concentrations of CaCl_(2).The physical properties and the humid-adsorption capacity of all porous host conditions were investigated.The porous host at sintering temperature 800℃has the highest specific surface area.Moreover,the porous host at sintering temperature 800℃with the 30%w/v concentration of CaCl_(2)desiccant has the highest humid-adsorption capacity.展开更多
Drying of a deformable saturated porous medium based on convective tempering is a novel method that can enhance energy efficiency and the quality of the dried product itself.In this experimental investigation,the perf...Drying of a deformable saturated porous medium based on convective tempering is a novel method that can enhance energy efficiency and the quality of the dried product itself.In this experimental investigation,the performances of this specific technique are compared with those of a standard stationary drying process in terms of deformation,drying kinetics,moisture redistribution,and energy consumption.In particular,the response of a deformable saturated porous medium(Kaolin)is considered.The results are critically discussed pointing out advantages and drawbacks.展开更多
The study experimented with using local ceramic raw materials (white clay, kaolin and silica or quartz) found in AssinFosu in the Central Region of Ghana to manufacture crucibles for melting metals and other precious ...The study experimented with using local ceramic raw materials (white clay, kaolin and silica or quartz) found in AssinFosu in the Central Region of Ghana to manufacture crucibles for melting metals and other precious minerals. Various physical tests were conducted on the materials to arrive at the body compositions. The compositions were also investigated for their elemental components by using X-ray fluorescence (XRF). The results revealed that the composition of Cruc containing 70% of white clay, 20% of kaolin, 8% of quartz and 2% of white grog;sintered at 1500˚C was very successful and therefore used to develop the recipe to manufacture the proposed crucibles. The “throwing” technique was employed to fabricate the crucibles. Test for thermal expansion was conducted for the manufactured crucibles at 1000˚C for thermal shock and microcracking tests. It was found out among others, that the recipe developed had very good physical and chemical properties of alumina silicate refractory materials and was fit for use at any high-temperature application. The study also recommended among others, that the researchers and institutions responsible for clay research such as Ghana Geological Survey Authority (GGSA) and Centre for Scientific and Industrial Research (CSIR) collaborate to improve upon this innovative idea.展开更多
Pure compounds and kaolin were employed to investigate the reaction behavior of ferric oxide in thetrinarysystem Fe2O3?SiO2?Al2O3 during reductive sintering process. The thermodynamic analyses and reductive sintering ...Pure compounds and kaolin were employed to investigate the reaction behavior of ferric oxide in thetrinarysystem Fe2O3?SiO2?Al2O3 during reductive sintering process. The thermodynamic analyses and reductive sintering experimental results show that ferrous oxide generated from the reduction of ferric oxide by carbon can react with silicon dioxide and aluminum oxide to form ferrous silicate and hercynite at 1173 K, respectively. In the trinary system Fe2O3?SiO2?Al2O3, ferrous oxide obtained from ferric oxide reduction preferentially reacts with aluminum oxide to form hercynite, and the reaction of ferrous oxide with silicon dioxide occurs only when there is surplus ferrous oxide after the exhaustion of aluminum oxide. When sintering temperature rises to 1473 K, hercynite further reacts with silicon dioxide to form mullite and ferrous oxide. Results presented in this work may throw a new light upon the separation of alumina and silica present in Al/Fe-bearing materials with low mass ratio of alumina to silica in alumina production.展开更多
文摘Polypropylene was cracked thermally and catalytically in the presence of kaoline and silica alumina in a semi batch reactor in the temperature range 400℃~550℃ in order to obtain suitable liquid fuels.The dependencies between process temperatures,types of catalyst,feed compositions and product yields of the obtained fuel fractions were found.It was observed that up to 450℃ thermal cracking temperature,the major product of pyrolysis was liquid oil and the major product at other higher temperatures(475℃~550℃) are viscous liquid or wax and the highest yield of pyrolysis product is 82.85% by weight at 500℃.Use of kaoline and silica alumina decreased the reaction time and increased the yield of liquid fraction.Again the major pyrolysis product in catalytic pyrolysis at all temperatures was low viscous liquid oil.Silica alumina was found better as compared to kaoline in liquid yield and in reducing the reaction temperature.The maximum oil yield using silica alumina and kaoline catalyst are 91% and 89.5% respectively.On the basis of the obtained results hypothetical continuous process of waste polypropylene plastics processing for engine fuel production can be presented.
文摘Using X-ray diffraction (XRD) analysis and an electron-probe microanalyser (EPMA), this research found that the main independent mineral of titanium (Ti) in the kaoline of Songyi is anatase. The granularity of anatase is from 0.5 μm to 1.5 μm, and some exceed 10 μm. This research provides important scientific evidence for the exploitation of the coal-measure kaoline in the South China.
文摘This paper finds out distributive pattern of principal minerals in Jiepai kaoline and demonstrates the black matter to be not organic matter but fine scaly mica-hematite aggregate in black vein mud, the nanometer mineral-portlandite Ca(OH)(2) in this kaoline is discovered.
文摘An acrylic acid/kaoline powder superabsorbent composite with a water absorbency of the superabsorbent composite about 1/800 was synthesized by inverse\|suspending polymerization reaction between acrylic acid monomer and kaoline ultrafine powder. The influence of the dispersant agent on the configuration of the products in the inverse suspension polymerization is investigated. The influences of the kaoline powder,cross\|linker,initiator,neutralization degree and the volume ratio of oil to water phase on the water absorbency of the superabsorbent composites are discussed in the paper.
基金supported by a grant from Petroleum Research and Development Center,Ministry of Oil,Iraq(No.304/16/1/2022).
文摘To meet the rapidly increasing demand for energy and the dramatic depletion of conventional crude oil,it is imperative to utilize sour naphtha.With no coke being produced,oxidative desulfurization(ODS)of naphtha lowers its sulfur content and average molecular weight.In this article,we outline a method for heavy naphtha non-extractive ODS using a very stable catalyst.The technique involves the use of a solid catalyst with oxygen gas as the oxidant.This necessitated relatively high mixing intensities;hence a three-phase Oscillatory Baffled Reactor(OBR)was used.The catalyst was based on the zeolite ZSM-5,prepared from natural kaolin by a series of delamination and activation steps and impregnated with Fe.A TiO2 nanolayer was applied,using the sol-gel method,to prevent rapid deactivation.The reactor performance was evaluated to minimize the sulfur content in the naphtha fuel.Due to the protective coating,the sulfur conversion stabilized at 90%.The results of this work establish the use of natural clay-based catalysts in a continuous,three-phase ODS,particularly with regard to proving long-term stability.It also showed that modest ODS can be achieved using an environmentally friendly oxidant,at mild operating conditions,whilst maintaining stability.
基金support and encouragement of the Joint Funds of the National Natural Science Foundation of China(No.U21B2095)the Major Research Project of National Natural Science Foundation of China(No.91834303).
文摘This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles.
基金the National Natural Science Foundation of China(52172017 and 51902095).
文摘Cement-based materials are fundamental in the construction industry,and enhancing their properties is an ongoing challenge.The use of superabsorbent polymers(SAP)has gained significant attention as a possible way to improve the performance of cement-based materials due to their unique water-absorption and retention properties.This study investigates the multifaceted impact of kaolin intercalation-modified superabsorbent polymers(K-SAP)on the properties of cement mortar.The results show that K-SAP significantly affects the cement mortar’s rheological behavior,with distinct phases of water absorption and release,leading to changes in workability over time.Furthermore,K-SAP alters the hydration kinetics,delaying the exothermic peak of hydration and subsequently modifying the heat release kinetics.Notably,K-SAP effectively maintains a higher internal relative humidity within the mortar,reducing the autogenous shrinkage behavior.Moreover,K-SAP can have a beneficial effect on pore structure and this can be ascribed to the internal curing effect of released water from K-SAP.
文摘In the tropics, lowland rice cultivation is often confronted with the problem of iron toxicity. The solution proposed by research in general is the use of industrial silicon. However, the high cost of industrial silicon limits its adoption by farmers. A study was carried out in Zakogbeu;Center-West of Côte d’Ivoire, to assess the potential of kaolin to mitigate the effect of this soil constraint on the root of the rice plant. Five kaolin-based treatments were analyzed (T<sub>0 </sub>= 0 kg kaolin ha<sup>−</sup><sup>1</sup>, T<sub>1</sub> = 366 kg kaolin ha<sup>−</sup><sup>1</sup>, T<sub>2</sub> = 736 kg kaolin ha<sup>−</sup><sup>1</sup>, T<sub>3</sub> = 1097 kg kaolin ha<sup>−</sup><sup>1</sup> and T<sub>4</sub> = 1465 kg kaolin ha<sup>−</sup><sup>1</sup> are 0, 200, 400, 600 and 800 kg SiO<sub>2</sub> ha<sup>−</sup><sup>1</sup>) in a device in complete random blocks, with 5 repetitions. The results obtained show that kaolin supply increases the length of the root tissue as well as the number of branching of the root of the rice plant. Root tissue increased from 10 cm with T<sub>0</sub> treatment to more than 15 cm with treatment T<sub>4</sub>. The microscopic observation of the roots shows that in the treatment T<sub>0</sub>, the roots present only primary ramifications and the tertiary and quaternary ramifications are observed with the treatments T<sub>3</sub> and T<sub>4</sub>. The contribution of kaolin is an alternative to inhibit the effect of iron toxicity on the rice plant root development in iron toxicity condition.
文摘In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy efficiency of various industrial applications by minimizing heat loss and temperature control. These panels function as silent protectors, aiding in reducing energy consumption and making things more sustainable and better for the environment. This is where composite materials come in;they are known for their lightweight nature, high strength-to-weight ratio, and excellent thermal insulation properties and have gained significant attention. Researchers are actively engaged in various studies aimed at enhancing these materials further. This research project focuses on the development of kaolin and glass fiber-reinforced composites for thermally insulating panels, to which natural strengthening materials like corn husk and bamboo fibers are added. The aim is to create cost-effective and efficient composite materials for thermal insulation applications by incorporating these components with a binder consisting of potassium silicate, hydroxide, and distilled water. This project involves conducting compression tests, bending tests, impact tests, thermal conductivity measurements, and microscopic analysis to evaluate the mechanical and thermal properties of the developed composites. The profound impact of these engineered composites on thermal insulation panels stands to revolutionize energy conservation efforts, offering a potent avenue to minimize heat loss and enhance overall energy efficiency across an array of industrial sectors.
文摘As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime candidate for reinforcement. This woody plant offers inherent strengths, biodegradability, and abundant availability. Due to its high cellulose content, its low thermal conductivity establishes bamboo as a thermally resistant material. Its low thermal conductivity, enhanced by a NaOH solution treatment, makes it an excellent thermally resistant material. Researchers incorporated Hollow Glass Microspheres (HGM) and Kaolin fillers into the epoxy matrix to improve the insulating properties of bamboo composites. These fillers substantially enhance thermal resistance, limiting heat transfer. Various compositions, like (30% HGM + 25% Bamboo + 65% Epoxy) and (30% Kaolin + 25% Bamboo + 45% Epoxy), were compared to identify the most efficient thermal insulator. Using Vacuum Assisted Resin Transfer Molding (VARTM) ensures uniform distribution of fillers and resin, creating a structurally sound thermal barrier. These reinforced composites, evaluated using the TOPSIS method, demonstrated their potential as high-performance materials combating heat transfer, offering a promising solution in the battle against climate change.
基金the research professional development project under the Science Achievement Scholarship of Thailand(SAST)for education financial support。
文摘The duck eggshell waste was developed to the novel desiccant that is friendly to human and environment.The calcium oxide(Ca O)and calcium chloride(CaCl_(2))as the calcium-based desiccants were prepared from eggshell waste.The Ca O desiccant derived from the eggshell waste sintering at 1300℃,while the CaCl_(2)desiccant was extracted from eggshell waste with the hydrochloric(HCl)solution at difierent concentrations from 5 to 30 wt%.The yield percentage of CaCl_(2)desiccant increased with increasing the HCl concentration to 25 wt%.The humidity adsorption behavior were investigated in the range of 75%-5%relative humidity.The results show the CaCl_(2)desiccant has the highest hydration rate.The porous host from the kaolin was sintered at different temperatures from 200 to 1000℃and incorporated with 30%w/v concentrations of CaCl_(2).The physical properties and the humid-adsorption capacity of all porous host conditions were investigated.The porous host at sintering temperature 800℃has the highest specific surface area.Moreover,the porous host at sintering temperature 800℃with the 30%w/v concentration of CaCl_(2)desiccant has the highest humid-adsorption capacity.
基金financial support from the Ministry of Higher Education(TUNISIA).
文摘Drying of a deformable saturated porous medium based on convective tempering is a novel method that can enhance energy efficiency and the quality of the dried product itself.In this experimental investigation,the performances of this specific technique are compared with those of a standard stationary drying process in terms of deformation,drying kinetics,moisture redistribution,and energy consumption.In particular,the response of a deformable saturated porous medium(Kaolin)is considered.The results are critically discussed pointing out advantages and drawbacks.
文摘The study experimented with using local ceramic raw materials (white clay, kaolin and silica or quartz) found in AssinFosu in the Central Region of Ghana to manufacture crucibles for melting metals and other precious minerals. Various physical tests were conducted on the materials to arrive at the body compositions. The compositions were also investigated for their elemental components by using X-ray fluorescence (XRF). The results revealed that the composition of Cruc containing 70% of white clay, 20% of kaolin, 8% of quartz and 2% of white grog;sintered at 1500˚C was very successful and therefore used to develop the recipe to manufacture the proposed crucibles. The “throwing” technique was employed to fabricate the crucibles. Test for thermal expansion was conducted for the manufactured crucibles at 1000˚C for thermal shock and microcracking tests. It was found out among others, that the recipe developed had very good physical and chemical properties of alumina silicate refractory materials and was fit for use at any high-temperature application. The study also recommended among others, that the researchers and institutions responsible for clay research such as Ghana Geological Survey Authority (GGSA) and Centre for Scientific and Industrial Research (CSIR) collaborate to improve upon this innovative idea.
基金Project(51274243)supported by the National Natural Science Foundation of China
文摘Pure compounds and kaolin were employed to investigate the reaction behavior of ferric oxide in thetrinarysystem Fe2O3?SiO2?Al2O3 during reductive sintering process. The thermodynamic analyses and reductive sintering experimental results show that ferrous oxide generated from the reduction of ferric oxide by carbon can react with silicon dioxide and aluminum oxide to form ferrous silicate and hercynite at 1173 K, respectively. In the trinary system Fe2O3?SiO2?Al2O3, ferrous oxide obtained from ferric oxide reduction preferentially reacts with aluminum oxide to form hercynite, and the reaction of ferrous oxide with silicon dioxide occurs only when there is surplus ferrous oxide after the exhaustion of aluminum oxide. When sintering temperature rises to 1473 K, hercynite further reacts with silicon dioxide to form mullite and ferrous oxide. Results presented in this work may throw a new light upon the separation of alumina and silica present in Al/Fe-bearing materials with low mass ratio of alumina to silica in alumina production.