Two non-isospectral KdV equations with self-consistent sources are derived. Gauge transformation between the first non-isospectral KdV equation with self-consistent sources (corresponding to λt = -2aA) and its isos...Two non-isospectral KdV equations with self-consistent sources are derived. Gauge transformation between the first non-isospectral KdV equation with self-consistent sources (corresponding to λt = -2aA) and its isospectral counterpart is given, from which exact solutions for the first non-isospectral KdV equation with self-consistent sources is easily listed. Besides, the soliton solutions for the two equations are obtained by means of Hirota's method and Wronskian technique, respectively. Meanwhile, the dynamical properties for these solutions are investigated.展开更多
This paper investigates in detail the dynamics of the modified KdV equation with self-consistent sources, including characteristics of one-soliton, scattering conditions and phase shifts of two solitons, degenerate ca...This paper investigates in detail the dynamics of the modified KdV equation with self-consistent sources, including characteristics of one-soliton, scattering conditions and phase shifts of two solitons, degenerate case of two solitons and "ghost" solitons, etc. Co-moving coordinate frames are employed in asymptotic analysis.展开更多
The coupled Korteweg-de Vries (CKdV) equation with self-consistent sources (CKdVESCS) and its Lax representation are derived. We present a generalized binary Darboux transformation (GBDT) with an arbitrary time-...The coupled Korteweg-de Vries (CKdV) equation with self-consistent sources (CKdVESCS) and its Lax representation are derived. We present a generalized binary Darboux transformation (GBDT) with an arbitrary time- dependent function for the CKdVESCS as well as the formula for the N-times repeated GBDT. This GBDT provides non-auto-Biicklund transformation between two CKdVESCSs with different degrees of sources and enables us to construct more generM solutions with N arbitrary t-dependent functions. We obtain positon, negaton, complexiton, and negaton- positon solutions of the CKdVESCS.展开更多
N-soliton solutions of the hierarchy of non-isospectral mKdV equation with self-consistent sources andthe hierarchy of non-isospectral sine-Gordon equation with self-consistent sources are obtained via the inverse sca...N-soliton solutions of the hierarchy of non-isospectral mKdV equation with self-consistent sources andthe hierarchy of non-isospectral sine-Gordon equation with self-consistent sources are obtained via the inverse scatteringtransform.展开更多
We propose a systematic method for generalizing the integrable couplings of soliton eqhations hierarchy with self-consistent sources associated with s/(4). The JM equations hierarchy with self-consistent sources is ...We propose a systematic method for generalizing the integrable couplings of soliton eqhations hierarchy with self-consistent sources associated with s/(4). The JM equations hierarchy with self-consistent sources is derived. Furthermore, an integrable couplings of the JM soliton hierarchy with self-consistent sources is presented by using of the loop algebra sl(4).展开更多
Regarded as the integrable generalization of Camassa-Holm (CH) equation, the CH equation with selfconsistent sources (CHESCS) is derived. The Lax representation of the CHESCS is presented. The conservation laws for CH...Regarded as the integrable generalization of Camassa-Holm (CH) equation, the CH equation with selfconsistent sources (CHESCS) is derived. The Lax representation of the CHESCS is presented. The conservation laws for CHESCS are constructed. The peakon solution, N-soliton, N-cuspon, N-positon, and N-negaton solutions of CHESCS are obtained by using Darboux transformation and the method of variation of constants.展开更多
The non-isospectral sine-Gordon equation with self-consistent sources is derived.Its solutions are obtainedby means of Hirota method and Wronskian technique,respectively.Non-isospectral dynamics including one-solitonc...The non-isospectral sine-Gordon equation with self-consistent sources is derived.Its solutions are obtainedby means of Hirota method and Wronskian technique,respectively.Non-isospectral dynamics including one-solitoncharacteristics,two-soliton scattering,and ghost solitons,are investigated.展开更多
A hierarchy of non-isospectral Ablowitz-Kaup-Newell-Segur (AKNS) equations with self-consistent sources is derived. As a general reduction case, a hierarchy of non-isospectral nonlinear SchrSdinger equations (NLSE...A hierarchy of non-isospectral Ablowitz-Kaup-Newell-Segur (AKNS) equations with self-consistent sources is derived. As a general reduction case, a hierarchy of non-isospectral nonlinear SchrSdinger equations (NLSE) with selfconsistent sources is obtained. Moreover, a new non-isospectral integrable coupling of the AKNS soliton hierarchy with self-consistent sources is constructed by using the Kronecker product.展开更多
In this letter we consider a limit symmetry of the modified KdV equation and its application. The similarity reduction leads to limit solutions of the modified KdV equation. Besides, a modified KdV equation with new s...In this letter we consider a limit symmetry of the modified KdV equation and its application. The similarity reduction leads to limit solutions of the modified KdV equation. Besides, a modified KdV equation with new self-consistent sources is obtained and its solutions are derived.展开更多
The Qiao-Liu equation with self-consistent sources (QLESCS) and its Lax representation are derived. A reciprocal transformation for the QLESCS is given. By making use of the reciprocal transformation and the solutions...The Qiao-Liu equation with self-consistent sources (QLESCS) and its Lax representation are derived. A reciprocal transformation for the QLESCS is given. By making use of the reciprocal transformation and the solutions of the mKdV equation with self-consistent sources (mKdVSCS), the solutions of the QLESCS are presented.展开更多
A discrete three-dimensional three wave interaction equation with self-consistent sources is constructed using the source generation procedure. The algebraic structure of the resulting fully discrete system is clarifi...A discrete three-dimensional three wave interaction equation with self-consistent sources is constructed using the source generation procedure. The algebraic structure of the resulting fully discrete system is clarified by presenting its discrete Gram-type determinant solution. It is shown that the discrete three-dimensional three wave interaction equation with self-consistent sources has a continuum limit into the three-dimensional three wave interaction equation with self-consistent sources.展开更多
We firstly propose two kinds of new multi-component BKP (mcBKP) hierarchy based on the eigenfunction symmetry reduction and nonstandard reduction, respectively. The first one contains two types of BKP equation with ...We firstly propose two kinds of new multi-component BKP (mcBKP) hierarchy based on the eigenfunction symmetry reduction and nonstandard reduction, respectively. The first one contains two types of BKP equation with self-consistent sources whose Lax representations are presented. The two mcBKP hierarchies both admit reductions to the k-constrained BKP hierarchy and to integrable (1+1)-dimensional hierarchy with self-consistent sources, which include two types of SK equation with self-consistent sources and of hi-directional SK equations with self-consistent展开更多
We propose a systematic method to construct the Mel’nikov model of long–short wave interactions,which is a special case of the Kadomtsev–Petviashvili(KP)equation with self-consistent sources(KPSCS).We show details ...We propose a systematic method to construct the Mel’nikov model of long–short wave interactions,which is a special case of the Kadomtsev–Petviashvili(KP)equation with self-consistent sources(KPSCS).We show details how the Cauchy matrix approach applies to Mel’nikov’s model which is derived as a complex reduction of the KPSCS.As a new result wefind that in the dispersion relation of a 1-soliton there is an arbitrary time-dependent function that has previously not reported in the literature about the Mel’nikov model.This function brings time variant velocity for the long wave and also governs the short-wave packet.The variety of interactions of waves resulting from the time-freedom in the dispersion relation is illustrated.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos. 10371070 and 10671121the Foundation for Excellent Postgraduates of Shanghai University under Grant No. Shucx080127
文摘Two non-isospectral KdV equations with self-consistent sources are derived. Gauge transformation between the first non-isospectral KdV equation with self-consistent sources (corresponding to λt = -2aA) and its isospectral counterpart is given, from which exact solutions for the first non-isospectral KdV equation with self-consistent sources is easily listed. Besides, the soliton solutions for the two equations are obtained by means of Hirota's method and Wronskian technique, respectively. Meanwhile, the dynamical properties for these solutions are investigated.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10371070 and 10671121the Foundation of Shanghai Education Committee for Shanghai Prospective Excellent Young Teachers
文摘This paper investigates in detail the dynamics of the modified KdV equation with self-consistent sources, including characteristics of one-soliton, scattering conditions and phase shifts of two solitons, degenerate case of two solitons and "ghost" solitons, etc. Co-moving coordinate frames are employed in asymptotic analysis.
基金The project supported by the National Fundamental Research Program of China(973 Program)under Grant No.2007CB814800National Natural Science Foundation of China under Grant No.10601028
文摘The coupled Korteweg-de Vries (CKdV) equation with self-consistent sources (CKdVESCS) and its Lax representation are derived. We present a generalized binary Darboux transformation (GBDT) with an arbitrary time- dependent function for the CKdVESCS as well as the formula for the N-times repeated GBDT. This GBDT provides non-auto-Biicklund transformation between two CKdVESCSs with different degrees of sources and enables us to construct more generM solutions with N arbitrary t-dependent functions. We obtain positon, negaton, complexiton, and negaton- positon solutions of the CKdVESCS.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10371070,10671121the Foundation of Shanghai Education Committee for Shanghai Prospective Excellent Young Teachers+1 种基金Shanghai Leading Academic Discipline Project under Grant No.J50101 the President Foundation of East China Institute of Technology under Grant No.DHXK0810
文摘N-soliton solutions of the hierarchy of non-isospectral mKdV equation with self-consistent sources andthe hierarchy of non-isospectral sine-Gordon equation with self-consistent sources are obtained via the inverse scatteringtransform.
基金Supported by the Research Work of Liaoning Provincial Development of Education under Grant No,2008670
文摘We propose a systematic method for generalizing the integrable couplings of soliton eqhations hierarchy with self-consistent sources associated with s/(4). The JM equations hierarchy with self-consistent sources is derived. Furthermore, an integrable couplings of the JM soliton hierarchy with self-consistent sources is presented by using of the loop algebra sl(4).
基金Supported by the Nationai Basic Research Program of China (973 program) under Grant No. 2007CB814800the National Science Foundation of China under Grant Nos. 10801083 and 10901090
文摘Regarded as the integrable generalization of Camassa-Holm (CH) equation, the CH equation with selfconsistent sources (CHESCS) is derived. The Lax representation of the CHESCS is presented. The conservation laws for CHESCS are constructed. The peakon solution, N-soliton, N-cuspon, N-positon, and N-negaton solutions of CHESCS are obtained by using Darboux transformation and the method of variation of constants.
基金The project supported by National Natural Science Foundation of China under Grant No.10371070 the Foundation of Shanghai Education Committee for Shanghai Prospective Excellent Young Teachers
文摘The non-isospectral sine-Gordon equation with self-consistent sources is derived.Its solutions are obtainedby means of Hirota method and Wronskian technique,respectively.Non-isospectral dynamics including one-solitoncharacteristics,two-soliton scattering,and ghost solitons,are investigated.
基金Project supported by the Research work of Liaoning Provincial Development of Education, China (Grant No 2008670)
文摘A hierarchy of non-isospectral Ablowitz-Kaup-Newell-Segur (AKNS) equations with self-consistent sources is derived. As a general reduction case, a hierarchy of non-isospectral nonlinear SchrSdinger equations (NLSE) with selfconsistent sources is obtained. Moreover, a new non-isospectral integrable coupling of the AKNS soliton hierarchy with self-consistent sources is constructed by using the Kronecker product.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10871165 and 10926036the Education Department under Grant No.Y200906909the Natural Science Foundation of under Grant No.Y6100126 of Zhejiang Province
文摘In this letter we consider a limit symmetry of the modified KdV equation and its application. The similarity reduction leads to limit solutions of the modified KdV equation. Besides, a modified KdV equation with new self-consistent sources is obtained and its solutions are derived.
基金Supported by National Basic Research Program of China (973 Program) under Grant No. 2007CB814800National Natural Science Foundation of China under Grant Nos. 10901090,11171175+1 种基金China Postdoctoral Science Foundation Funded Project under GrantNo. 20110490408Chinese Universities Scientific Fund under Grant No. 2011JS041
文摘The Qiao-Liu equation with self-consistent sources (QLESCS) and its Lax representation are derived. A reciprocal transformation for the QLESCS is given. By making use of the reciprocal transformation and the solutions of the mKdV equation with self-consistent sources (mKdVSCS), the solutions of the QLESCS are presented.
基金Acknowledgements The first author would like to express her sincere thanks to Prof. Xing-Biao ttu for his helpful discussion and encouragement. This work was supported by the Program of Higher-level Talents of Inner Mongolia University (2011153, 21100-5145101), the National Natural Science Foundation of China (Grant Nos. 11561048, 11547101) and the Natural Science Foundation of Inner Mongolia Autonomous Region (2015MS0116).
文摘A discrete three-dimensional three wave interaction equation with self-consistent sources is constructed using the source generation procedure. The algebraic structure of the resulting fully discrete system is clarified by presenting its discrete Gram-type determinant solution. It is shown that the discrete three-dimensional three wave interaction equation with self-consistent sources has a continuum limit into the three-dimensional three wave interaction equation with self-consistent sources.
基金supported by National Basic Research Program of China (973 Program) under Grant No.2007CB814800National Natural Science Foundation of China under Grant No.10601028the Natural Science Foundation of Fujian Province under Grant No.2008J0199
文摘We firstly propose two kinds of new multi-component BKP (mcBKP) hierarchy based on the eigenfunction symmetry reduction and nonstandard reduction, respectively. The first one contains two types of BKP equation with self-consistent sources whose Lax representations are presented. The two mcBKP hierarchies both admit reductions to the k-constrained BKP hierarchy and to integrable (1+1)-dimensional hierarchy with self-consistent sources, which include two types of SK equation with self-consistent sources and of hi-directional SK equations with self-consistent
基金supported by the NSF of China(Nos.11875040 and 11631007)。
文摘We propose a systematic method to construct the Mel’nikov model of long–short wave interactions,which is a special case of the Kadomtsev–Petviashvili(KP)equation with self-consistent sources(KPSCS).We show details how the Cauchy matrix approach applies to Mel’nikov’s model which is derived as a complex reduction of the KPSCS.As a new result wefind that in the dispersion relation of a 1-soliton there is an arbitrary time-dependent function that has previously not reported in the literature about the Mel’nikov model.This function brings time variant velocity for the long wave and also governs the short-wave packet.The variety of interactions of waves resulting from the time-freedom in the dispersion relation is illustrated.