GC/MS and GC/MS/MS techniques were employed to describe the characteristics of biomarker assem-blages in two sets of hydrocarbon source rocks,Jurassic and Permian,in southwestern Tarim,and the parameters for the class...GC/MS and GC/MS/MS techniques were employed to describe the characteristics of biomarker assem-blages in two sets of hydrocarbon source rocks,Jurassic and Permian,in southwestern Tarim,and the parameters for the classification of the two sets of hydrocarbon source rocks have been established. It is found that diahopane and C30-unknown terpane are abundant in Permian samples,the contents of diahopane in Jurassic samples are relatively low,and terpenoids have been detected in Jurassic samples but not in Permian source rock samples. Kekeya crude oils are abundant in diahopane and C30-unknown terpane. The results of fine oil-rock correlation indicated that Kekeya crude oils were derived mainly from the Permian hydrocarbon source rocks. However,a small amount of diterpenoid was detected in the crude oils,indicating that the Jurassic hydrocarbon source rocks also made a certain contribution to Kekeya crude oils.展开更多
This work discussed the origins, alteration and accumulation processes of the oil and gas in the Kekeya gas condensate field based on molecular compositions, stable carbon isotopes, light hydrocarbons, diamondoid hydr...This work discussed the origins, alteration and accumulation processes of the oil and gas in the Kekeya gas condensate field based on molecular compositions, stable carbon isotopes, light hydrocarbons, diamondoid hydrocarbons and biomarker fingerprints. A comparison study is also made between the geochemical characteristics of the Kekeya hydrocarbons and typical marine and terrigenous hydrocarbons of the Tarim Basin. Natural gas from the Kekeya gas condensate field is derived from Middle–Lower Jurassic coal measures while the condensates are derived from Carboniferous–Permian marine source rocks with a higher maturity. In the study area, both natural gas and condensates have experienced severe water washing. A large amount of methane was dissolved into the water, resulting in a decrease in the dryness coefficient. Water washing also makes the carbon isotopic compositions of the natural gas more negative and partially reverse. Considering that the gas maturities are higher than once expected, gas generation intensity in the study area should be much stronger and the gas related to the Jurassic coal measures could promise a greater prospecting potential. As a result of evaporative fractionation, the Kekeya condensates are enriched in saturates and lack aromatics. Evaporative fractionation disguises the original terrigenous characteristics of the light hydrocarbons associated with the natural gas, making it appear marinesourced. Thus, alteration processes should be fully taken into consideration when gas–source correlations are carried out based on light hydrocarbons. With the condensates discovered in the study area all being "migration phase", the pre-salt Cretaceous and Jurassic reservoirs may promise great exploration potential for the "residual phase" hydrocarbons. This research not only is of significance for oil and gas exploration in the southwest Tarim Basin, but also sheds light on the oil/gas-source correlations in general.展开更多
This paper is mainly concentrated on the geochemical characteristics and origin of gas of Kekeya field in the Tarim basin, NW China. This study shows that Permian mudstone is the main source rock of oil and gas. Based...This paper is mainly concentrated on the geochemical characteristics and origin of gas of Kekeya field in the Tarim basin, NW China. This study shows that Permian mudstone is the main source rock of oil and gas. Based on the carbon isotopes of C 1-C 4, the carbon isotope of gas in Kekeya field is a little heavier than that in the typical marine-derived gas. The relationship between carbon isotopes of methane and ethane is coincident with Faber equation of gas derived from organic matter Ⅰ/Ⅱ. The majority of gas maturity is estimated, based on the formula, at 1.8 %-2.2 % besides K2 and K18 wells. In addition, the gas derived from 0.9 %-1.2 % R o source rocks may also be mixture. 40Ar/ 36Ar and 3He/ 4He ratios from the gas samples also support the mixing process. Moreover, the gas in this region is mainly generated from more mature source rocks although the low mature gas exists.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant No.40773039)
文摘GC/MS and GC/MS/MS techniques were employed to describe the characteristics of biomarker assem-blages in two sets of hydrocarbon source rocks,Jurassic and Permian,in southwestern Tarim,and the parameters for the classification of the two sets of hydrocarbon source rocks have been established. It is found that diahopane and C30-unknown terpane are abundant in Permian samples,the contents of diahopane in Jurassic samples are relatively low,and terpenoids have been detected in Jurassic samples but not in Permian source rock samples. Kekeya crude oils are abundant in diahopane and C30-unknown terpane. The results of fine oil-rock correlation indicated that Kekeya crude oils were derived mainly from the Permian hydrocarbon source rocks. However,a small amount of diterpenoid was detected in the crude oils,indicating that the Jurassic hydrocarbon source rocks also made a certain contribution to Kekeya crude oils.
基金funded by the National Natural Science Foundation of China (grant No.41503044)the Fundamental Research Program of PetroChina (grant No.2014B–0608)
文摘This work discussed the origins, alteration and accumulation processes of the oil and gas in the Kekeya gas condensate field based on molecular compositions, stable carbon isotopes, light hydrocarbons, diamondoid hydrocarbons and biomarker fingerprints. A comparison study is also made between the geochemical characteristics of the Kekeya hydrocarbons and typical marine and terrigenous hydrocarbons of the Tarim Basin. Natural gas from the Kekeya gas condensate field is derived from Middle–Lower Jurassic coal measures while the condensates are derived from Carboniferous–Permian marine source rocks with a higher maturity. In the study area, both natural gas and condensates have experienced severe water washing. A large amount of methane was dissolved into the water, resulting in a decrease in the dryness coefficient. Water washing also makes the carbon isotopic compositions of the natural gas more negative and partially reverse. Considering that the gas maturities are higher than once expected, gas generation intensity in the study area should be much stronger and the gas related to the Jurassic coal measures could promise a greater prospecting potential. As a result of evaporative fractionation, the Kekeya condensates are enriched in saturates and lack aromatics. Evaporative fractionation disguises the original terrigenous characteristics of the light hydrocarbons associated with the natural gas, making it appear marinesourced. Thus, alteration processes should be fully taken into consideration when gas–source correlations are carried out based on light hydrocarbons. With the condensates discovered in the study area all being "migration phase", the pre-salt Cretaceous and Jurassic reservoirs may promise great exploration potential for the "residual phase" hydrocarbons. This research not only is of significance for oil and gas exploration in the southwest Tarim Basin, but also sheds light on the oil/gas-source correlations in general.
文摘This paper is mainly concentrated on the geochemical characteristics and origin of gas of Kekeya field in the Tarim basin, NW China. This study shows that Permian mudstone is the main source rock of oil and gas. Based on the carbon isotopes of C 1-C 4, the carbon isotope of gas in Kekeya field is a little heavier than that in the typical marine-derived gas. The relationship between carbon isotopes of methane and ethane is coincident with Faber equation of gas derived from organic matter Ⅰ/Ⅱ. The majority of gas maturity is estimated, based on the formula, at 1.8 %-2.2 % besides K2 and K18 wells. In addition, the gas derived from 0.9 %-1.2 % R o source rocks may also be mixture. 40Ar/ 36Ar and 3He/ 4He ratios from the gas samples also support the mixing process. Moreover, the gas in this region is mainly generated from more mature source rocks although the low mature gas exists.