This paper investigates the interaction of a small number of modes in the two-fluid Kelvin-Helmholtz instability at the nonlinear regime by using a two-dimensional hydrodynamic code. This interaction is found to be re...This paper investigates the interaction of a small number of modes in the two-fluid Kelvin-Helmholtz instability at the nonlinear regime by using a two-dimensional hydrodynamic code. This interaction is found to be relatively long range in wave-number space and also it acts in both directions, i.e. short wavelengths affect long wavelengths and vice versa. There is no simple equivalent transformation from a band of similar modes to one mode representing their effective amplitude. Three distinct stages of interaction have been identified.展开更多
The sixth-order accurate phase error flux-corrected transport numerical algorithm is introduced, and used to simulate Kelvin-Helmholtz instability. Linear growth rates of the simulation agree with the linear theories ...The sixth-order accurate phase error flux-corrected transport numerical algorithm is introduced, and used to simulate Kelvin-Helmholtz instability. Linear growth rates of the simulation agree with the linear theories of Kelvin Helmholtz instability. It indicates the validity and accuracy of this simulation method. The method also has good capturing ability of the instability interface deformation.展开更多
Nonlinear MHD Kelvin-Helmholtz(K-H)instability in a pipe is treated with the deriva- tive expansion method in the present paper The linear stability problem was discussed in the past by Chandrasekhar(1961)and Xu et al...Nonlinear MHD Kelvin-Helmholtz(K-H)instability in a pipe is treated with the deriva- tive expansion method in the present paper The linear stability problem was discussed in the past by Chandrasekhar(1961)and Xu et al.(1981).Nagano(1979)discussed the nonlinear MHD K-H instability with infinite depth.He used the singular perturbation method and extrapolated the ob- tained second order modifier of amplitude vs.frequency to seek the nonlinear effect on the instability growth rate γ.However,in our view,such an extrapolation is inappropriate.Because when the instabili- ty sets in,the growth rates of higher,order terms on the right hand side of equations will exceed the cor- responding secular producing terms,so the expansion will still become meaningless even if the secular producing terms are eliminated.Mathematically speaking,it's impossible to derive formula(39) when γ_0~2 is negative in Nagano's paper.Moreover,even as early as γ_0~2→O^+,the expansion be- comes invalid because the 2nd order modifier γ_2(in his formula(56))tends to infinity.This weak- ness is removed in this paper,and the result is extended to the case of a pipe with finite depth.展开更多
In the presented work, we consider applications of non-classical equations and their approaches to the solution of some classes of equations that arise in the Kelvin-Helmholtz Mechanism (KHM) and instability. In all a...In the presented work, we consider applications of non-classical equations and their approaches to the solution of some classes of equations that arise in the Kelvin-Helmholtz Mechanism (KHM) and instability. In all areas where the Kelvin-Helmholtz instability (KHI) problem is investigated with the corresponding data unchanged, the solution can be taken directly in a specific form (for example, to determine the horizontal structure of a perturbation in a barotropic rotational flow, which is a boundary condition taken, as well as other types of Kelvin-Helmholtz instability problems). In another example, the shear flow along the magnetic field in the Z direction, which is the width of the contact layer between fast and slow flows, has a velocity gradient along the X axis with wind shear. The most difficult problems arise when the above unmentioned equation has singularities simultaneously at points and in this case, our results also remain valid. In the case of linear wave analysis of Kelvin-Helmholtz instability (KHI) at a tangential discontinuity (TD) of ideal magneto-hydro-dynamic (MHD) plasma, it can be attributed to the presented class, and in this case, as far as we know, solutions for eigen modes of instability KH in MHD plasma that satisfy suitable homogeneous boundary conditions. Based on the above mentioned area of application for degenerating ordinary differential equations in this work, the method of functional analysis in order to prove the generalized solution is used. The investigated equation covers a class of a number of difficult-to-solve problems, namely, generalized solutions are found for classes of problems that have analytical and mathematical descriptions. With the aid of lemmas and theorems, the existence and uniqueness of generalized solutions in the weight space are proved, and then general and particular exact solutions are found for the considered problems that are expressed analytically explicitly. Obtained our results may be used for all the difficult-to-solve processes of KHM and instabilities and instabilities, which cover widely studied areas like galaxies, Kelvin-Helmholtz instability in the atmospheres of planets, oceans, clouds and moons, for example, during the formation of the Earth or the Red Spot on Jupiter, as well as in the atmospheres of the Sun and other stars. In this paper, also, a fairly common class of equations and examples are indicated that can be used directly to enter data for the use of the studied suitable tasks.展开更多
利用corner transport upwind和constrained transport算法求解非理想磁流体动力学方程组,对匀强平行磁场作用下,黏性各向异性等离子体自由剪切层中的Kelvin-Helmholtz不稳定性进行了数值模拟.从流动结构、涡结构演化、磁场分布、横向...利用corner transport upwind和constrained transport算法求解非理想磁流体动力学方程组,对匀强平行磁场作用下,黏性各向异性等离子体自由剪切层中的Kelvin-Helmholtz不稳定性进行了数值模拟.从流动结构、涡结构演化、磁场分布、横向磁压力、抗弯磁张力等角度对各向同性和各向异性黏性算例结果进行了讨论,分析了黏性各向异性对Kelvin-Helmholtz不稳定性的影响.结果表明,黏性各向异性比黏性各向同性更利于流动的稳定.其稳定性作用是由于磁感线方向上剪切速率降低导致界面卷起程度和圈数的降低,并使卷起结构中小涡产生增殖、合并,破坏了涡的常规增长,从而导致流动的稳定.黏性各向异性对横向磁压力的影响比对抗弯磁张力更大.展开更多
通过直接数值求解Navier-Stokes方程,研究了入流激励下可压缩剪切层中Kelvin-Helmholtz(KH)涡结构的响应特性,结果清晰地展示了KH涡的独特演化方式.基于流动可视化数据,采用两点相关性分析获得了流场拟序结构的空间尺寸和结构角分布.通...通过直接数值求解Navier-Stokes方程,研究了入流激励下可压缩剪切层中Kelvin-Helmholtz(KH)涡结构的响应特性,结果清晰地展示了KH涡的独特演化方式.基于流动可视化数据,采用两点相关性分析获得了流场拟序结构的空间尺寸和结构角分布.通过分析不同激励频率下涡结构的动态特性,揭示了入流激励下可压缩剪切层中KH涡结构的独特演化机理.研究结果表明,低频入流激励(f=5 k Hz)下KH涡尺寸在远场区域达到饱和后呈现锁频状态,KH涡量厚度稳定在12-14 mm之间;与自由剪切层涡结构通过配对合并的方式实现生长的机理不同,低频入流激励下剪切层的发展是通过中间涡核顺时针吞噬KH不稳定波诱导的一串外围小涡结构来实现生长.此外,针对高频激励(f=20 k Hz)下的剪切层流动,研究了涡结构特性和入流激励参数之间的定量关系,发现均匀分布涡结构的尺寸近似等于对流速度与入流激励频率之比.展开更多
采用CTU+CT (corner transport upwind+constrained transport)算法对磁流体动力学方程组进行求解,分别对有无磁场控制条件下开尔文-赫姆霍兹(Kelvin-Helmholtz,KH)不稳定性的演化过程进行数值模拟.数值结果分析了磁场(MA=3.33)对混合...采用CTU+CT (corner transport upwind+constrained transport)算法对磁流体动力学方程组进行求解,分别对有无磁场控制条件下开尔文-赫姆霍兹(Kelvin-Helmholtz,KH)不稳定性的演化过程进行数值模拟.数值结果分析了磁场(MA=3.33)对混合层流场涡量和压力演化的影响,并与经典流体力学情况进行对比;另外,还从磁压力和磁张力分布情况对磁场抑制KH不稳定性的机理进行分析.结果表明,外加磁场对混合层结构的演变产生很大的影响,其中,磁压力使涡量在界面处沉积,而磁张力能够产生一个与涡旋转方向相反的力矩,从而对大涡结构起到拉伸破坏作用,最终抑制了涡的卷起.此外,当流动发展到一定阶段,在磁压力、磁张力以及压力场的共同作用下,界面在曲率最大位置处会发生分离,最终形成"鱼钩"状涡结构.展开更多
基金Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070290008)the National Basic Research Program of China (Grant No 2007CB815100)
文摘This paper investigates the interaction of a small number of modes in the two-fluid Kelvin-Helmholtz instability at the nonlinear regime by using a two-dimensional hydrodynamic code. This interaction is found to be relatively long range in wave-number space and also it acts in both directions, i.e. short wavelengths affect long wavelengths and vice versa. There is no simple equivalent transformation from a band of similar modes to one mode representing their effective amplitude. Three distinct stages of interaction have been identified.
基金supported by the National Basic Research Program(973 Program)under Grant No.2007CB815100the Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070290008
文摘The sixth-order accurate phase error flux-corrected transport numerical algorithm is introduced, and used to simulate Kelvin-Helmholtz instability. Linear growth rates of the simulation agree with the linear theories of Kelvin Helmholtz instability. It indicates the validity and accuracy of this simulation method. The method also has good capturing ability of the instability interface deformation.
基金The project is supported by the National Natural Science Foundation of China.
文摘Nonlinear MHD Kelvin-Helmholtz(K-H)instability in a pipe is treated with the deriva- tive expansion method in the present paper The linear stability problem was discussed in the past by Chandrasekhar(1961)and Xu et al.(1981).Nagano(1979)discussed the nonlinear MHD K-H instability with infinite depth.He used the singular perturbation method and extrapolated the ob- tained second order modifier of amplitude vs.frequency to seek the nonlinear effect on the instability growth rate γ.However,in our view,such an extrapolation is inappropriate.Because when the instabili- ty sets in,the growth rates of higher,order terms on the right hand side of equations will exceed the cor- responding secular producing terms,so the expansion will still become meaningless even if the secular producing terms are eliminated.Mathematically speaking,it's impossible to derive formula(39) when γ_0~2 is negative in Nagano's paper.Moreover,even as early as γ_0~2→O^+,the expansion be- comes invalid because the 2nd order modifier γ_2(in his formula(56))tends to infinity.This weak- ness is removed in this paper,and the result is extended to the case of a pipe with finite depth.
文摘In the presented work, we consider applications of non-classical equations and their approaches to the solution of some classes of equations that arise in the Kelvin-Helmholtz Mechanism (KHM) and instability. In all areas where the Kelvin-Helmholtz instability (KHI) problem is investigated with the corresponding data unchanged, the solution can be taken directly in a specific form (for example, to determine the horizontal structure of a perturbation in a barotropic rotational flow, which is a boundary condition taken, as well as other types of Kelvin-Helmholtz instability problems). In another example, the shear flow along the magnetic field in the Z direction, which is the width of the contact layer between fast and slow flows, has a velocity gradient along the X axis with wind shear. The most difficult problems arise when the above unmentioned equation has singularities simultaneously at points and in this case, our results also remain valid. In the case of linear wave analysis of Kelvin-Helmholtz instability (KHI) at a tangential discontinuity (TD) of ideal magneto-hydro-dynamic (MHD) plasma, it can be attributed to the presented class, and in this case, as far as we know, solutions for eigen modes of instability KH in MHD plasma that satisfy suitable homogeneous boundary conditions. Based on the above mentioned area of application for degenerating ordinary differential equations in this work, the method of functional analysis in order to prove the generalized solution is used. The investigated equation covers a class of a number of difficult-to-solve problems, namely, generalized solutions are found for classes of problems that have analytical and mathematical descriptions. With the aid of lemmas and theorems, the existence and uniqueness of generalized solutions in the weight space are proved, and then general and particular exact solutions are found for the considered problems that are expressed analytically explicitly. Obtained our results may be used for all the difficult-to-solve processes of KHM and instabilities and instabilities, which cover widely studied areas like galaxies, Kelvin-Helmholtz instability in the atmospheres of planets, oceans, clouds and moons, for example, during the formation of the Earth or the Red Spot on Jupiter, as well as in the atmospheres of the Sun and other stars. In this paper, also, a fairly common class of equations and examples are indicated that can be used directly to enter data for the use of the studied suitable tasks.
文摘利用corner transport upwind和constrained transport算法求解非理想磁流体动力学方程组,对匀强平行磁场作用下,黏性各向异性等离子体自由剪切层中的Kelvin-Helmholtz不稳定性进行了数值模拟.从流动结构、涡结构演化、磁场分布、横向磁压力、抗弯磁张力等角度对各向同性和各向异性黏性算例结果进行了讨论,分析了黏性各向异性对Kelvin-Helmholtz不稳定性的影响.结果表明,黏性各向异性比黏性各向同性更利于流动的稳定.其稳定性作用是由于磁感线方向上剪切速率降低导致界面卷起程度和圈数的降低,并使卷起结构中小涡产生增殖、合并,破坏了涡的常规增长,从而导致流动的稳定.黏性各向异性对横向磁压力的影响比对抗弯磁张力更大.
文摘通过直接数值求解Navier-Stokes方程,研究了入流激励下可压缩剪切层中Kelvin-Helmholtz(KH)涡结构的响应特性,结果清晰地展示了KH涡的独特演化方式.基于流动可视化数据,采用两点相关性分析获得了流场拟序结构的空间尺寸和结构角分布.通过分析不同激励频率下涡结构的动态特性,揭示了入流激励下可压缩剪切层中KH涡结构的独特演化机理.研究结果表明,低频入流激励(f=5 k Hz)下KH涡尺寸在远场区域达到饱和后呈现锁频状态,KH涡量厚度稳定在12-14 mm之间;与自由剪切层涡结构通过配对合并的方式实现生长的机理不同,低频入流激励下剪切层的发展是通过中间涡核顺时针吞噬KH不稳定波诱导的一串外围小涡结构来实现生长.此外,针对高频激励(f=20 k Hz)下的剪切层流动,研究了涡结构特性和入流激励参数之间的定量关系,发现均匀分布涡结构的尺寸近似等于对流速度与入流激励频率之比.
文摘采用CTU+CT (corner transport upwind+constrained transport)算法对磁流体动力学方程组进行求解,分别对有无磁场控制条件下开尔文-赫姆霍兹(Kelvin-Helmholtz,KH)不稳定性的演化过程进行数值模拟.数值结果分析了磁场(MA=3.33)对混合层流场涡量和压力演化的影响,并与经典流体力学情况进行对比;另外,还从磁压力和磁张力分布情况对磁场抑制KH不稳定性的机理进行分析.结果表明,外加磁场对混合层结构的演变产生很大的影响,其中,磁压力使涡量在界面处沉积,而磁张力能够产生一个与涡旋转方向相反的力矩,从而对大涡结构起到拉伸破坏作用,最终抑制了涡的卷起.此外,当流动发展到一定阶段,在磁压力、磁张力以及压力场的共同作用下,界面在曲率最大位置处会发生分离,最终形成"鱼钩"状涡结构.