期刊文献+
共找到501篇文章
< 1 2 26 >
每页显示 20 50 100
Prediction of flyrock induced by mine blasting using a novel kernel-based extreme learning machine 被引量:3
1
作者 Mehdi Jamei Mahdi Hasanipanah +2 位作者 Masoud Karbasi Iman Ahmadianfar Somaye Taherifar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1438-1451,共14页
Blasting is a common method of breaking rock in surface mines.Although the fragmentation with proper size is the main purpose,other undesirable effects such as flyrock are inevitable.This study is carried out to evalu... Blasting is a common method of breaking rock in surface mines.Although the fragmentation with proper size is the main purpose,other undesirable effects such as flyrock are inevitable.This study is carried out to evaluate the capability of a novel kernel-based extreme learning machine algorithm,called kernel extreme learning machine(KELM),by which the flyrock distance(FRD) is predicted.Furthermore,the other three data-driven models including local weighted linear regression(LWLR),response surface methodology(RSM) and boosted regression tree(BRT) are also developed to validate the main model.A database gathered from three quarry sites in Malaysia is employed to construct the proposed models using 73 sets of spacing,burden,stemming length and powder factor data as inputs and FRD as target.Afterwards,the validity of the models is evaluated by comparing the corresponding values of some statistical metrics and validation tools.Finally,the results verify that the proposed KELM model on account of highest correlation coefficient(R) and lowest root mean square error(RMSE) is more computationally efficient,leading to better predictive capability compared to LWLR,RSM and BRT models for all data sets. 展开更多
关键词 BLASTING Flyrock distance kernel extreme learning machine(kelm) Local weighted linear regression(LWLR) Response surface methodology(RSM)
下载PDF
Dynamic model for predicting nitrogen oxide concentration at outlet of selective catalytic reduction denitrification system based on kernel extreme learning machine 被引量:1
2
作者 Ma Ning Liu Lei +2 位作者 Yang Zhenyong Yan Laiqing Dong Ze 《Journal of Southeast University(English Edition)》 EI CAS 2022年第4期383-391,共9页
To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal co... To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal component analysis(PCA)was proposed and applied to the prediction of nitrogen oxide(NO_(x))concentration at the outlet of a selective catalytic reduction(SCR)denitrification system.First,PCA is applied to the feature information extraction of input data,and the current and previous sequence values of the extracted information are used as the inputs of the KELM model to reflect the dynamic characteristics of the NO_(x)concentration at the SCR outlet.Then,the model takes the historical data of the NO_(x)concentration at the SCR outlet as the model input to improve its accuracy.Finally,an optimization algorithm is used to determine the optimal parameters of the model.Compared with the Gaussian process regression,long short-term memory,and convolutional neural network models,the prediction errors are reduced by approximately 78.4%,67.6%,and 59.3%,respectively.The results indicate that the proposed dynamic model structure is reliable and can accurately predict NO_(x)concentrations at the outlet of the SCR system. 展开更多
关键词 selective catalytic reduction nitrogen oxides principal component analysis kernel extreme learning machine dynamic model
下载PDF
Power Transformer Fault Diagnosis Using Random Forest and Optimized Kernel Extreme Learning Machine 被引量:1
3
作者 Tusongjiang Kari Zhiyang He +3 位作者 Aisikaer Rouzi Ziwei Zhang Xiaojing Ma Lin Du 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期691-705,共15页
Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accura... Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accuracy.In order to further improve the fault diagnosis performance of power trans-formers,a random forest feature selection method coupled with optimized kernel extreme learning machine is presented in this study.Firstly,the random forest feature selection approach is adopted to rank 42 related input features derived from gas concentration,gas ratio and energy-weighted dissolved gas analysis.Afterwards,a kernel extreme learning machine tuned by the Aquila optimization algorithm is implemented to adjust crucial parameters and select the optimal feature subsets.The diagnosis accuracy is used to assess the fault diagnosis capability of concerned feature subsets.Finally,the optimal feature subsets are applied to establish fault diagnosis model.According to the experimental results based on two public datasets and comparison with 5 conventional approaches,it can be seen that the average accuracy of the pro-posed method is up to 94.5%,which is superior to that of other conventional approaches.Fault diagnosis performances verify that the optimum feature subset obtained by the presented method can dramatically improve power transformers fault diagnosis accuracy. 展开更多
关键词 Power transformer fault diagnosis kernel extreme learning machine aquila optimization random forest
下载PDF
Anomaly Detection of UAV State Data Based on Single-Class Triangular Global Alignment Kernel Extreme Learning Machine
4
作者 Feisha Hu Qi Wang +2 位作者 Haijian Shao Shang Gao Hualong Yu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2405-2424,共20页
Unmanned Aerial Vehicles(UAVs)are widely used and meet many demands in military and civilian fields.With the continuous enrichment and extensive expansion of application scenarios,the safety of UAVs is constantly bein... Unmanned Aerial Vehicles(UAVs)are widely used and meet many demands in military and civilian fields.With the continuous enrichment and extensive expansion of application scenarios,the safety of UAVs is constantly being challenged.To address this challenge,we propose algorithms to detect anomalous data collected from drones to improve drone safety.We deployed a one-class kernel extreme learning machine(OCKELM)to detect anomalies in drone data.By default,OCKELM uses the radial basis(RBF)kernel function as the kernel function of themodel.To improve the performance ofOCKELM,we choose a TriangularGlobalAlignmentKernel(TGAK)instead of anRBF Kernel and introduce the Fast Independent Component Analysis(FastICA)algorithm to reconstruct UAV data.Based on the above improvements,we create a novel anomaly detection strategy FastICA-TGAK-OCELM.The method is finally validated on the UCI dataset and detected on the Aeronautical Laboratory Failures and Anomalies(ALFA)dataset.The experimental results show that compared with other methods,the accuracy of this method is improved by more than 30%,and point anomalies are effectively detected. 展开更多
关键词 UAV safety kernel extreme learning machine triangular global alignment kernel fast independent component analysis
下载PDF
基于IAOA-KELM的储气库注采管柱内腐蚀速率预测 被引量:1
5
作者 骆正山 于瑶如 +1 位作者 骆济豪 王小完 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期971-977,共7页
针对储气库注采管柱的内腐蚀速率预测问题,建立了基于阿基米德优化算法(Archimedes Optimization Algorithm,AOA)与核极限学习机(Kernel Extreme Learning Machine,KELM)相结合的模型提高腐蚀速率预测精度。通过引入佳点集、改进密度降... 针对储气库注采管柱的内腐蚀速率预测问题,建立了基于阿基米德优化算法(Archimedes Optimization Algorithm,AOA)与核极限学习机(Kernel Extreme Learning Machine,KELM)相结合的模型提高腐蚀速率预测精度。通过引入佳点集、改进密度降低因子、采用黄金正弦算法缩小搜索空间,提高局部开发能力,利用改进阿基米德优化算法(Improved Archimedes Optimization Algorithm,IAOA)优化KELM正则化系数(C)和核函数参数(γ),进而建立IAOA-KELM储气库注采管柱内腐蚀速率预测模型;使用MATLAB软件运用该模型对某注采管柱内腐蚀数据集进行学习与预测,将IAOA-KELM模型与KELM、粒子群优化算法(Particle Swarm Optimization,PSO)-KELM、AOA-KELM结果进行预测误差对比。结果表明,IAOA-KELM模型的预测值与实际值较为拟合,其E RMSE为0.65%,E MAE为0.39%,R 2为99.83%,均优于其他模型。研究表明,IAOA-KELM模型能够更为准确地预测储气库注采管柱内腐蚀速率,为储气库注采管柱的运维及储气库的健康管理提供参考。 展开更多
关键词 安全工程 地下储气库 注采管柱 核极限学习机 改进阿基米德优化算法 腐蚀速率
下载PDF
基于ikPCA-FABAS-KELM的短期风电功率预测 被引量:1
6
作者 徐武 范鑫豪 +2 位作者 沈智方 刘洋 刘武 《南京信息工程大学学报》 CAS 北大核心 2024年第3期321-331,共11页
为了增强在短期风电功率预测领域中传统数据驱动机器学习模型的精度,提出基于ikPCA-FABAS-KELM的短期风电功率预测模型.首先,对主成分分析进行改进,提出可逆核主成分分析(ikPCA),在保证数据特征的同时,降低输入数据的复杂度,以提升模型... 为了增强在短期风电功率预测领域中传统数据驱动机器学习模型的精度,提出基于ikPCA-FABAS-KELM的短期风电功率预测模型.首先,对主成分分析进行改进,提出可逆核主成分分析(ikPCA),在保证数据特征的同时,降低输入数据的复杂度,以提升模型运行速度;其次,引入萤火虫个体吸引策略对天牛须算法(BAS)进行改进,提出FABAS算法;最后,利用FABAS算法对核极限学习机(KELM)的正则化参数C和核参数γ进行寻优,降低人为因素对模型盲目训练的影响,提高模型预测精度.仿真结果显示,提出的预测模型有效提高了传统模型的预测精度. 展开更多
关键词 短期风电功率预测 萤火虫算法 天牛须算法 核主成分分析 核极限学习机
下载PDF
基于Adaboost-INGO-HKELM的变压器故障辨识 被引量:2
7
作者 谢国民 江海洋 《电力系统保护与控制》 EI CSCD 北大核心 2024年第5期94-104,共11页
针对目前变压器故障诊断准确率低的问题,提出一种多策略集成模型。首先通过等度量映射(isometric mapping, Isomap)对高维非线性不可分的变压器故障数据进行降维处理。其次,利用混合核极限学习机(hybrid kernel based extreme learning ... 针对目前变压器故障诊断准确率低的问题,提出一种多策略集成模型。首先通过等度量映射(isometric mapping, Isomap)对高维非线性不可分的变压器故障数据进行降维处理。其次,利用混合核极限学习机(hybrid kernel based extreme learning machine, HKELM)进行训练学习,考虑到HKELM模型易受参数影响,所以利用北方苍鹰优化算法(northern goshawk optimization, NGO)对其参数进行寻优。但由于NGO收敛速度较慢,易陷入局部最优,引入切比雪夫混沌映射、择优学习、自适应t分布联合策略对其进行改进。同时为了提高模型整体的准确率,通过结合Adaboost集成算法,构建Adaboost-INGO-HKELM变压器故障辨识模型。最后,将提出的Adaboost-INGO-HKELM模型与未进行降维处理的INGO-HKELM模型、Isomap-INGO-KELM模型、Adaboost-Isomap-GWO-SVM等7种模型的测试准确率进行对比。提出的Adaboost-INGO-HKELM模型的准确率可达96%,均高于其他模型,验证了该模型对变压器故障辨识具有很好的效果。 展开更多
关键词 故障诊断 油浸式变压器 Adaboost集成算法 切比雪夫混沌映射 混合核极限学习机 等度量映射
下载PDF
基于BA-MKELM的微电网故障识别与定位 被引量:1
8
作者 吴忠强 卢雪琴 《计量学报》 CSCD 北大核心 2024年第2期253-260,共8页
提出一种基于贝叶斯算法优化多核极限学习机的微电网故障识别和定位方法。针对极限学习机输入参数和隐含层节点数随机选取导致回归能力不足的问题,引入核函数,将多项式与高斯径向基核函数加权组合构成多核极限学习机建立故障识别与定位... 提出一种基于贝叶斯算法优化多核极限学习机的微电网故障识别和定位方法。针对极限学习机输入参数和隐含层节点数随机选取导致回归能力不足的问题,引入核函数,将多项式与高斯径向基核函数加权组合构成多核极限学习机建立故障识别与定位模型,并采用贝叶斯算法对多核极限学习机相关参数进行优化,进一步提高模型的逼近能力。为了验证所提模型的故障识别与定位性能,选用极限学习机和多核极限学习机分别建立故障诊断模型进行比较分析。实验结果表明,所提方法能够高性能地识别和定位微电网中任何类型的故障,识别和定位精度更高。 展开更多
关键词 电学计量 微电网线路 故障识别和定位 贝叶斯算法 多核极限学习机 小波包分解
下载PDF
基于GMPE和GWO-MKELM算法的往复压缩机轴承故障诊断
9
作者 李彦阳 王金东 曲孝海 《科学技术与工程》 北大核心 2024年第23期9842-9847,共6页
针对往复压缩机内部结构复杂,轴承间隙故障特征提取困难和识别准确率不高等问题,提出了多尺度排列熵和多核极限学习机混合算法的智能诊断新方法。首先,针对多尺度排列熵在多尺度过程中,利用均值粗粒化的方式在一定程度上“中和”了原始... 针对往复压缩机内部结构复杂,轴承间隙故障特征提取困难和识别准确率不高等问题,提出了多尺度排列熵和多核极限学习机混合算法的智能诊断新方法。首先,针对多尺度排列熵在多尺度过程中,利用均值粗粒化的方式在一定程度上“中和”了原始信号的动力学突变行为,降低了熵值分析的准确性,提出了一种广义多尺度排列熵算法;然后,为解决核极限学习机处理复杂数据样本分类存在的局限性,将高斯核函数、多项式核函数和感知器核函数进行线性叠加,构建混合核函数,提出了多核极限学习机模型。仿真实验结果表明,该故障诊断方法识别准确率高达98%,高效地实现了轴承不同种类故障的智能诊断。 展开更多
关键词 往复压缩机 灰狼优化算法 广义多尺度排列熵 多核极限学习机 故障诊断
下载PDF
基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断
10
作者 戚晓利 王兆俊 +3 位作者 毛俊懿 王志文 崔德海 赵方祥 《振动与冲击》 EI CSCD 北大核心 2024年第11期165-175,共11页
针对现有深度卷积神经网络对滚动轴承混合故障诊断效果不佳以及模型复杂度过高导致计算成本过大等问题,提出了一种基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断方法。该模型由RegNet-CSAM网络和ZOA-KELM分类算法组成。首先,将融合... 针对现有深度卷积神经网络对滚动轴承混合故障诊断效果不佳以及模型复杂度过高导致计算成本过大等问题,提出了一种基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断方法。该模型由RegNet-CSAM网络和ZOA-KELM分类算法组成。首先,将融合了通道和空间特征的注意力机制CSAM与组卷积残差模块结合,提升该结构的表征能力,由此构建的RegNet-CSAM网络,模型复杂度为0.48GF;其次,在分类阶段将斑马优化核极限学习机(ZOA-KELM)替代原来网络中使用的Softmax函数完成最后的分类任务。滚动轴承故障诊断试验结果表明,RegNet网络对滚动轴承混合故障样本容易产生误判,CSAM的融入虽将RegNet网络的分类精度进一步提高,但是仍然存在一定程度的滚动轴承混合故障误判问题;而将ZOA-KELM替代Softmax函数后再对RegNet-CSAM网络输出特征进行分类,能够有效识别出滚动轴承的单一和混合故障,准确率达到了99.92%。所提方法对比其他网络,诊断精度最大提升5.02%,模型复杂度最大缩减32倍。 展开更多
关键词 故障诊断 滚动轴承 组卷积残差结构 注意力机制 斑马优化核极限学习机(ZOA-kelm)
下载PDF
基于NMF-KELM的资源环境承载力评价与预测
11
作者 唐勇波 丰娟 龚国勇 《河北省科学院学报》 CAS 2024年第5期50-59,共10页
资源环境承载力评价与预测对区域可持续发展有重要的指导意义。本文提出了基于非负矩阵分解(NMF)和核极限学习机(KELM)的资源环境承载力评价与预测方法,在构建江西省资源环境承载力指标体系的基础上,引入NMF对2005—2020年该地区资源环... 资源环境承载力评价与预测对区域可持续发展有重要的指导意义。本文提出了基于非负矩阵分解(NMF)和核极限学习机(KELM)的资源环境承载力评价与预测方法,在构建江西省资源环境承载力指标体系的基础上,引入NMF对2005—2020年该地区资源环境承载力状况进行量化测度和系统分析,利用加权灰关联法和全排列多边形图示法对承载力结果验证分析,建立了基于NMF-KELM的承载力预测模型并对承载力的演变趋势进行预测。研究结果表明:①2005—2020年,江西省资源环境承载力指数由0.0963提高至0.7975,整体呈波动上升趋势,高速发展的社会经济是承载力的最直接驱动力。②NMF、加权灰关联法和全排列多边形图示法三者反映的趋势和结论是一致的,NMF评价结果更客观。③环境系统成为制约江西省资源环境承载力提高的主要因素,其中万元GDP工业废气排放量是最重要的影响因素。④与BP神经网络和灰色模型相比,基于NMF-KELM的承载力预测模型拟合精度高,能够更好地预测江西省资源环境承载力的演变趋势。 展开更多
关键词 资源环境承载力 非负矩阵分解 加权灰关联法 核极限学习机 江西省
下载PDF
基于IHHO-HKELM输电线路覆冰预测模型
12
作者 黄力 宋爽 +4 位作者 刘闯 王骏骏 胡丹 何其新 鲁偎依 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期33-41,共9页
为了进一步提高输电线路覆冰预测精度,提出一种基于改进哈里斯鹰算法(improved harris hawk optimiza-tion,IHHO)优化混合核极限学习机(hybrid kernel extreme learning machine,HKELM)的输电线路覆冰预测模型。在核极限学习机(KELM)中... 为了进一步提高输电线路覆冰预测精度,提出一种基于改进哈里斯鹰算法(improved harris hawk optimiza-tion,IHHO)优化混合核极限学习机(hybrid kernel extreme learning machine,HKELM)的输电线路覆冰预测模型。在核极限学习机(KELM)中引入混合核函数,形成HKELM,利用黄金正弦、非线性递减能量指数和高斯随机游走等策略对IHHO算法进行改进;以IHHO算法的优化性能采用其对HKELM的权值向量和核参数进行优化,建立基于IHHO-HKELM的输电线路覆冰预测模型,并通过计算气象因素与覆冰厚度之间的灰色关联度确定覆冰预测模型的输入量。算例分析结果表明,IHHO-HKELM模型预测结果的均方误差、最大误差和平均相对误差分别为0.285、0.860 mm和2.83%,预测效果好于其他模型,将本文覆冰预测模型应用于其他覆冰线路,可获得良好的应用效果并验证模型的优越性和实用性。 展开更多
关键词 输电线路 覆冰预测 核极限学习机 混合核函数 改进哈里斯鹰算法
下载PDF
基于ARO-MKELM的微电网攻击检测
13
作者 吴忠强 张伟一 《计量学报》 CSCD 北大核心 2024年第10期1444-1452,共9页
智能电网的复杂性和开放性使其在信息交换时更易受到网络攻击的威胁。目前大多数检测方法只关注检测攻击的存在性,不能确定受到攻击的分布式电源的具体位置,导致无法快速将被攻击的分布式电源隔离,继而造成严重的损失。提出一种基于人... 智能电网的复杂性和开放性使其在信息交换时更易受到网络攻击的威胁。目前大多数检测方法只关注检测攻击的存在性,不能确定受到攻击的分布式电源的具体位置,导致无法快速将被攻击的分布式电源隔离,继而造成严重的损失。提出一种基于人工兔群优化算法优化多核极限学习机的交流微电网虚假数据注入攻击检测方法。在传统极限学习机中引入组合核函数以提升检测模型的学习能力和泛化能力,并采用具有强全局搜索能力的人工兔群优化算法优化多核极限学习机的核函数参数及正则化系数,进一步提升检测模型的检测精度。利用非训练样本内幅值为55和95的阶跃攻击信号进行仿真验证,检测准确率范围分别达到了(93.44~94.64)%和(98.11~99.23)%,与其他检测模型进行对比分析,验证了所提方法的优越性。 展开更多
关键词 电学计量 交流微电网 虚假数据注入 人工兔群优化算法 多核极限学习机
下载PDF
基于GRO优化的VMD-HKELM月蒸发量预测方法研究
14
作者 李菊 崔东文 《水文》 CSCD 北大核心 2024年第5期25-31,共7页
水面蒸发预测对于水库水量预测、区域水量平衡分析和水资源量核算等具有重要意义。水面蒸发量预测影响因素众多,并最终体现在随时间变化的蒸发量监测数据中。为此,基于淘金热(GRO)算法优化变分模态分解(VMD)-混合核极限学习机(HKELM)提... 水面蒸发预测对于水库水量预测、区域水量平衡分析和水资源量核算等具有重要意义。水面蒸发量预测影响因素众多,并最终体现在随时间变化的蒸发量监测数据中。为此,基于淘金热(GRO)算法优化变分模态分解(VMD)-混合核极限学习机(HKELM)提出两种方案。方案Ⅰ先对月蒸发量时间序列分解,后划分训练集、测试集;方案Ⅱ先对月蒸发量划分训练集、测试集,再进行时间序列分解。通过一种新型元启发式算法对分解技术VMD、预测器HKELM超参数进行目标寻优并建立多种模型,采用云南省龙潭寨、西洋街水文站月蒸发量预测实例对方案Ⅰ、方案Ⅱ各模型进行检验。结果表明:方案Ⅰ各模型性能优于方案Ⅱ,各模型的拟合精度和预测精度总体上随分解分量数的增加而提高,但方案Ⅰ使用了测试集信息,导致预测精度虚高;方案Ⅱ各模型具有较好的预测精度和稳健性能,其用于月蒸发量时间序列预测是可行的,反映出客观真实的预测效果,具有较好的实用价值和意义。 展开更多
关键词 变分模态分解 淘金热优化算法 混合核极限学习机 超参数优化 月蒸发量预测
下载PDF
基于改进的KELM轴承故障诊断算法
15
作者 张成 李朝阳 《工业控制计算机》 2024年第9期59-61,共3页
提出了一种使用核主成分分析(KPCA)、改进的麻雀搜索算法(OCSSA)和核极限学习机(KELM)相结合的算法来解决工厂化工过程中数据非高斯性和数据耦合性强的故障检测问题。首先使用KPCA算法降维,然后使用OCSSA算法寻找KELM中核参数γ和正则... 提出了一种使用核主成分分析(KPCA)、改进的麻雀搜索算法(OCSSA)和核极限学习机(KELM)相结合的算法来解决工厂化工过程中数据非高斯性和数据耦合性强的故障检测问题。首先使用KPCA算法降维,然后使用OCSSA算法寻找KELM中核参数γ和正则化系数C的最优取值。其中对SSA算法的改进如下:通过引入混沌映射技术增加SSA算法的种群丰富性,采用鱼鹰优化算法在第一阶段的全局勘探策略来替换SSA算法的发现者位置更新公式,利用柯西变异策略来替换SSA算法的跟随者位置更新公式。最终建立了一种KPCA、OCSSA和KELM三种算法相结合的轴承故障诊断分类算法。实验结果显示,经过OCSSA优化后,该算法在解决轴承故障时表现出了较高的准确性和有效性。 展开更多
关键词 故障诊断 核主成分分析 麻雀算法 核极限学习机
下载PDF
基于相似日聚类和PCC-VMD-SSA-KELM模型的短期光伏功率预测 被引量:4
16
作者 李争 张杰 +3 位作者 徐若思 罗晓瑞 梅春晓 孙鹤旭 《太阳能学报》 EI CAS CSCD 北大核心 2024年第2期460-468,共9页
由于光伏发电的随机性和不稳定性会影响功率预测的精度,提出一种基于皮尔逊相关系数(PCC)、K-均值算法(K-means)、变分模态分解(VMD)、麻雀搜索算法(SSA)、核函数极限学习机(KELM)的光伏功率短期预测模型。首先,用PCC选取主要因素作为输... 由于光伏发电的随机性和不稳定性会影响功率预测的精度,提出一种基于皮尔逊相关系数(PCC)、K-均值算法(K-means)、变分模态分解(VMD)、麻雀搜索算法(SSA)、核函数极限学习机(KELM)的光伏功率短期预测模型。首先,用PCC选取主要因素作为输入;K-均值算法进行相似日聚类,将历史数据聚类为晴天、多云和雨天;其次,VMD对原始信号进行分解,充分提取集合中的输入因素信息,提高数据质量;SSA优化KELM模型的核函数参数和正则化系数解决其参数选择敏感问题;最后,将不同序列预测值叠加得到最终预测结果。仿真结果表明,所提相似日聚类下PCC-VMD-SSA-KELM模型具有较小的预测误差。 展开更多
关键词 光伏发电 功率预测 变分模态分解 K-均值 麻雀算法 核函数极限学习机
下载PDF
基于改进相似日优化HBA-BiLSTM-KELM的光伏发电功率预测 被引量:2
17
作者 李超然 潘鹏程 +2 位作者 杨伟荣 徐恒山 魏业文 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期508-516,共9页
为提高光伏发电系统输出功率的预测精度,提出基于改进相似日和蜜獾算法(HBA)优化改进双向长短期记忆神经网络(BiLSTM)与核极限学习机(KELM)的光伏发电预测方法。首先,使用CRITIC权重法动态计算各气象因素对光伏发电功率的影响权重,通过... 为提高光伏发电系统输出功率的预测精度,提出基于改进相似日和蜜獾算法(HBA)优化改进双向长短期记忆神经网络(BiLSTM)与核极限学习机(KELM)的光伏发电预测方法。首先,使用CRITIC权重法动态计算各气象因素对光伏发电功率的影响权重,通过逐时刻计算历史日和待预测日的加权欧氏距离确定相似日。其次,使用HBA优化BiLSTM和KELM模型参数,然后使用HBA参数优化后的BiLSTM进行功率预测,优化后的KELM进行误差优化预测。最后将初步预测功率和误差预测功率相加得到最终预测功率。仿真结果表明:该模型平均绝对百分比误差为0.91%,具有较高的光伏系统输出功率预测精度。 展开更多
关键词 光伏发电 功率预测 神经网络 核极限学习机 蜜獾算法
下载PDF
通过PO-KELM的3D NAND FLASH寿命预测方法研究
18
作者 卜柯方 李杰 秦丽 《中国测试》 CAS 北大核心 2024年第9期74-82,共9页
随着半导体行业的快速发展,以及各种芯片国产化的趋势越来越明显,3D NAND FLASH作为当前存储器件的重要代表,其寿命预测对于保障系统可靠性至关重要。因此,通过硬件搭建现场可编程门阵列采集平台,对3D NAND FLASH进行特性分析,在不同擦... 随着半导体行业的快速发展,以及各种芯片国产化的趋势越来越明显,3D NAND FLASH作为当前存储器件的重要代表,其寿命预测对于保障系统可靠性至关重要。因此,通过硬件搭建现场可编程门阵列采集平台,对3D NAND FLASH进行特性分析,在不同擦除/写入次数下模拟FLASH可能发生的不同误码情况,分析耐久性、数据保持特性以及读、写干扰特性的变化趋势。同时提出鹦鹉优化器改进的核极限机器学习机,由于核极限学习机参数寻优困难,鹦鹉优化器通过搜索位置提高参数寻优速度和准确度。采用将已使用的循环次数作为输出结果对FLASH进行寿命预测。实验结果表明,相比其他机器学习,采用鹦鹉优化的核极限学习机预测模型精度可以达到98.5%,在提升训练速度和准确度中具有重要的现实意义。 展开更多
关键词 3D NAND FLASH 现场可编程门阵列(FPGA) 机器学习 鹦鹉优化器(PO) 核极限学习机(kelm)
下载PDF
基于LOO-PSO-KELM复合算法的微电阻点焊质量预测与工艺优化
19
作者 张瑞 何奕程 +2 位作者 黄海松 高鑫 杨凯 《焊接》 2024年第11期11-18,26,共9页
【目的】为了提高小样本数据条件下微电阻点焊焊接质量预测的精度和泛化能力,提出了一种基于交叉验证(Leave one out,LOO)与粒子群优化算法(Particle swarm optimization,PSO)协同优化核极限学习机(Kernel extreme learning machine,KE... 【目的】为了提高小样本数据条件下微电阻点焊焊接质量预测的精度和泛化能力,提出了一种基于交叉验证(Leave one out,LOO)与粒子群优化算法(Particle swarm optimization,PSO)协同优化核极限学习机(Kernel extreme learning machine,KELM)的回归预测方法(LOO-PSO-KELM)。【方法】首先,采用正交试验方法开展电阻点焊工艺试验,建立小样本数据集,并采用留一法交叉验证对数据集进行分类。然后,基于验证数据集的绝对误差和与核极限学习机预测模型,利用粒子群优化算法对核极限学习机的参数进行寻优,获得可靠稳定的预测模型。最后,以选取的焊接工艺参数和LOO-PSO-KELM模型为基础,采用粒子群算法对工艺参数进行优化,获取最优工艺参数。【结果】与传统的PSO-BP神经网络和PSO-KELM算法对比,LOO-PSO-KELM算法在各类标准上表现优异,其预测的熔核直径和拉剪力的均方根误差分别为0.0199和4.4249;基于选取的焊接工艺参数对LOO-PSO-KELM模型进行验证,LOO-PSO-KELM模型预测值与试验验证结果的相对误差均小于3%,与正交试验下的最佳参数比较,拉剪力提高了2%。【结论】与传统方法相比,LOO-PSO-KELM预测模型具有更强的预测性能。在小样本数据集下,体现了较强的泛化性能,所提出的方法在微点焊的锂电池连接中具有良好的应用价值。 展开更多
关键词 微电阻点焊 核极限学习机 质量预测 参数优化
下载PDF
基于ICEEMDAN分解重构的BiLSTM-KELM短期电力负荷预测
20
作者 王晨 李又轩 +2 位作者 王淑侠 邬蓉蓉 吴其琦 《科学技术与工程》 北大核心 2024年第32期13836-13843,共8页
短期电力负荷预测在维持电力系统稳定运行、优化资源配置中发挥着至关重要的作用。针对电力负荷数据的复杂性和随机性以及现有预测模型的低精度问题,提出了一种新型的短期电力负荷预测模型。该模型包括改进的自适应噪声完备集经验模态分... 短期电力负荷预测在维持电力系统稳定运行、优化资源配置中发挥着至关重要的作用。针对电力负荷数据的复杂性和随机性以及现有预测模型的低精度问题,提出了一种新型的短期电力负荷预测模型。该模型包括改进的自适应噪声完备集经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)和排列熵(permutation entropy,PE)重构部分,以及双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)与核极限学习(kernel extreme learning machine,KELM)预测部分。首先,使用ICEEMDAN将复杂的负荷数据分解成n个相对平稳的子序列,从而降低数据的随机性,并引入排列熵来计算每个子序列的PE值来进行重构,有效减小了模型的计算规模。其次,采用BiLSTM模型来挖掘数据之间的内在联系,对各个重构序列进行学习和预测。最后,利用KELM对重构序列的预测值进行非线性拟合,进一步提高预测精度。实验结果表明:ICEEMDAN-PE-BiLSTM-KELM模型比传统长短期记忆神经网络(long short-term memory,LSTM)模型的均方根误差(root mean square error,RMSE)降低了106.05 MW,平均绝对误差(mean absolute error,MAE)降低了62.34 MW,平均绝对百分比误差(mean absolute percentage error,MAPE)降低了0.877%,可见该模型能够更好地解决数据的复杂性和随机性,同时提高预测精度。 展开更多
关键词 短期电力负荷预测 改进的自适应噪声完备集经验模态分解(ICEEMDAN) 排列熵(PE) 双向长短期记忆神经网络(BiLSTM) 核极限学习(kelm)
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部