Deep learning algorithms based on neural networks make remarkable achievements in machine fault diagnosis,while the noise mixed in measured signals harms the prediction accuracy of networks.Existing denoising methods ...Deep learning algorithms based on neural networks make remarkable achievements in machine fault diagnosis,while the noise mixed in measured signals harms the prediction accuracy of networks.Existing denoising methods in neural networks,such as using complex network architectures and introducing sparse techniques,always suffer from the difficulty of estimating hyperparameters and the lack of physical interpretability.To address this issue,this paper proposes a novel interpretable denoising layer based on reproducing kernel Hilbert space(RKHS)as the first layer for standard neural networks,with the aim to combine the advantages of both traditional signal processing technology with physical interpretation and network modeling strategy with parameter adaption.By investigating the influencing mechanism of parameters on the regularization procedure in RKHS,the key parameter that dynamically controls the signal smoothness with low computational cost is selected as the only trainable parameter of the proposed layer.Besides,the forward and backward propagation algorithms of the designed layer are formulated to ensure that the selected parameter can be automatically updated together with other parameters in the neural network.Moreover,exponential and piecewise functions are introduced in the weight updating process to keep the trainable weight within a reasonable range and avoid the ill-conditioned problem.Experiment studies verify the effectiveness and compatibility of the proposed layer design method in intelligent fault diagnosis of machinery in noisy environments.展开更多
Consider the design problem for estimation and extrapolation in approximately linear regression models with possible misspecification. The design space is a discrete set consisting of finitely many points, and the mod...Consider the design problem for estimation and extrapolation in approximately linear regression models with possible misspecification. The design space is a discrete set consisting of finitely many points, and the model bias comes from a reproducing kernel Hilbert space. Two different design criteria are proposed by applying the minimax approach for estimating the parameters of the regression response and extrapolating the regression response to points outside of the design space. A simulated annealing algorithm is applied to construct the minimax designs. These minimax designs are compared with the classical D-optimal designs and all-bias extrapolation designs. Numerical results indicate that the simulated annealing algorithm is feasible and the minimax designs are robust against bias caused by model misspecification.展开更多
The spherical approximation between two nested reproducing kernels Hilbert spaces generated from different smooth kernels is investigated. It is shown that the functions of a space can be approximated by that of the s...The spherical approximation between two nested reproducing kernels Hilbert spaces generated from different smooth kernels is investigated. It is shown that the functions of a space can be approximated by that of the subspace with better smoothness. Furthermore, the upper bound of approximation error is given.展开更多
This paper presents a method of lines solution based on the reproducing kernel Hilbert space method to the nonlinear one-dimensional Klein-Gordon equation that arises in many scientific fields areas.Our method uses di...This paper presents a method of lines solution based on the reproducing kernel Hilbert space method to the nonlinear one-dimensional Klein-Gordon equation that arises in many scientific fields areas.Our method uses discretization of the partial derivatives of the space variable to get a system of ODEs in the time variable and then solve the system of ODEs using reproducing kernel Hilbert space method.Consider two examples to validate the proposed method.Compare the results with the exact solution by calculating the error norms L_(2) and L_(∞) at various time levels.The results show that the presented scheme is a systematic,effective and powerful technique for the solution of Klein-Gordon equation.展开更多
The estimation of high dimensional covariance matrices is an interesting and important research topic for many empirical time series problems such as asset allocation. To solve this dimension dilemma, a factor structu...The estimation of high dimensional covariance matrices is an interesting and important research topic for many empirical time series problems such as asset allocation. To solve this dimension dilemma, a factor structure has often been taken into account. This paper proposes a dynamic factor structure whose factor loadings are generated in reproducing kernel Hilbert space(RKHS), to capture the dynamic feature of the covariance matrix. A simulation study is carried out to demonstrate its performance. Four different conditional variance models are considered for checking the robustness of our method and solving the conditional heteroscedasticity in the empirical study. By exploring the performance among eight introduced model candidates and the market baseline, the empirical study from 2001 to 2017 shows that portfolio allocation based on this dynamic factor structure can significantly reduce the variance, i.e., the risk, of portfolio and thus outperform the market baseline and the ones based on the traditional factor model.展开更多
We consider a gradient iteration algorithm for prediction of functional linear regression under the framework of reproducing kernel Hilbert spaces.In the algorithm,we use an early stopping technique,instead of the cla...We consider a gradient iteration algorithm for prediction of functional linear regression under the framework of reproducing kernel Hilbert spaces.In the algorithm,we use an early stopping technique,instead of the classical Tikhonov regularization,to prevent the iteration from an overfitting function.Under mild conditions,we obtain upper bounds,essentially matching the known minimax lower bounds,for excess prediction risk.An almost sure convergence is also established for the proposed algorithm.展开更多
Complementary-label learning(CLL)aims at finding a classifier via samples with complementary labels.Such data is considered to contain less information than ordinary-label samples.The transition matrix between the tru...Complementary-label learning(CLL)aims at finding a classifier via samples with complementary labels.Such data is considered to contain less information than ordinary-label samples.The transition matrix between the true label and the complementary label,and some loss functions have been developed to handle this problem.In this paper,we show that CLL can be transformed into ordinary classification under some mild conditions,which indicates that the complementary labels can supply enough information in most cases.As an example,an extensive misclassification error analysis was performed for the Kernel Ridge Regression(KRR)method applied to multiple complementary-label learning(MCLL),which demonstrates its superior performance compared to existing approaches.展开更多
We provide a kernel-regularized method to give theory solutions for Neumann boundary value problem on the unit ball. We define the reproducing kernel Hilbert space with the spherical harmonics associated with an inner...We provide a kernel-regularized method to give theory solutions for Neumann boundary value problem on the unit ball. We define the reproducing kernel Hilbert space with the spherical harmonics associated with an inner product defined on both the unit ball and the unit sphere, construct the kernel-regularized learning algorithm from the view of semi-supervised learning and bound the upper bounds for the learning rates. The theory analysis shows that the learning algorithm has better uniform convergence according to the number of samples. The research can be regarded as an application of kernel-regularized semi-supervised learning.展开更多
In this paper,an efficient multi-step scheme is presented based on reproducing kernel Hilbert space(RKHS)theory for solving ordinary stiff differential systems.The solution methodology depends on reproducing kernel fu...In this paper,an efficient multi-step scheme is presented based on reproducing kernel Hilbert space(RKHS)theory for solving ordinary stiff differential systems.The solution methodology depends on reproducing kernel functions to obtain analytic solutions in a uniform formfor a rapidly convergent series in the posed Sobolev space.Using the Gram-Schmidt orthogonality process,complete orthogonal essential functions are obtained in a compact field to encompass Fourier series expansion with the help of kernel properties reproduction.Consequently,by applying the standard RKHS method to each subinterval,approximate solutions that converge uniformly to the exact solutions are obtained.For this purpose,several numerical examples are tested to show proposed algorithm’s superiority,simplicity,and efficiency.The gained results indicate that themulti-step RKHSmethod is suitable for solving linear and nonlinear stiffness systems over an extensive duration and giving highly accurate outcomes.展开更多
By combining the wavelet decomposition with kernel method, a practical approach of universal multiscale wavelet kernels constructed in reproducing kernel Hilbert space (RKHS) is discussed, and an identification sche...By combining the wavelet decomposition with kernel method, a practical approach of universal multiscale wavelet kernels constructed in reproducing kernel Hilbert space (RKHS) is discussed, and an identification scheme using wavelet support vector machines (WSVM) estimator is proposed for nordinear dynamic systems. The good approximating properties of wavelet kernel function enhance the generalization ability of the proposed method, and the comparison of some numerical experimental results between the novel approach and some existing methods is encouraging.展开更多
In this paper,the weak pre-orthogonal adaptive Fourier decomposition(W-POAFD)method is applied to solve fractional boundary value problems(FBVPs)in the reproducing kernel Hilbert spaces(RKHSs)W_(0)^(4)[0,1] and W^(1)[...In this paper,the weak pre-orthogonal adaptive Fourier decomposition(W-POAFD)method is applied to solve fractional boundary value problems(FBVPs)in the reproducing kernel Hilbert spaces(RKHSs)W_(0)^(4)[0,1] and W^(1)[0,1].The process of the W-POAFD is as follows:(i)choose a dictionary and implement the pre-orthogonalization to all the dictionary elements;(ii)select points in[0,1]by the weak maximal selection principle to determine the corresponding orthonormalized dictionary elements iteratively;(iii)express the analytical solution as a linear combination of these determined dictionary elements.Convergence properties of numerical solutions are also discussed.The numerical experiments are carried out to illustrate the accuracy and efficiency of W-POAFD for solving FBVPs.展开更多
In this paper, we apply the new algorithm of reproducing kernel method to give the approximate solution to some functional-differential equations. The numerical results demonstrate the accuracy of the proposed algorithm.
基金Supported by National Natural Science Foundation of China(Grant Nos.12072188,11632011,11702171,11572189,51121063)Shanghai Municipal Natural Science Foundation of China(Grant No.20ZR1425200).
文摘Deep learning algorithms based on neural networks make remarkable achievements in machine fault diagnosis,while the noise mixed in measured signals harms the prediction accuracy of networks.Existing denoising methods in neural networks,such as using complex network architectures and introducing sparse techniques,always suffer from the difficulty of estimating hyperparameters and the lack of physical interpretability.To address this issue,this paper proposes a novel interpretable denoising layer based on reproducing kernel Hilbert space(RKHS)as the first layer for standard neural networks,with the aim to combine the advantages of both traditional signal processing technology with physical interpretation and network modeling strategy with parameter adaption.By investigating the influencing mechanism of parameters on the regularization procedure in RKHS,the key parameter that dynamically controls the signal smoothness with low computational cost is selected as the only trainable parameter of the proposed layer.Besides,the forward and backward propagation algorithms of the designed layer are formulated to ensure that the selected parameter can be automatically updated together with other parameters in the neural network.Moreover,exponential and piecewise functions are introduced in the weight updating process to keep the trainable weight within a reasonable range and avoid the ill-conditioned problem.Experiment studies verify the effectiveness and compatibility of the proposed layer design method in intelligent fault diagnosis of machinery in noisy environments.
基金Supported by National Natural Science Foundation of China(11471216,11301332)E-Institutes of Shanghai Municipal Education Commission(E03004)+1 种基金Central Finance Project(YC-XK-13105)Shanghai Municipal Science and Technology Research Project(14DZ1201902)
文摘Consider the design problem for estimation and extrapolation in approximately linear regression models with possible misspecification. The design space is a discrete set consisting of finitely many points, and the model bias comes from a reproducing kernel Hilbert space. Two different design criteria are proposed by applying the minimax approach for estimating the parameters of the regression response and extrapolating the regression response to points outside of the design space. A simulated annealing algorithm is applied to construct the minimax designs. These minimax designs are compared with the classical D-optimal designs and all-bias extrapolation designs. Numerical results indicate that the simulated annealing algorithm is feasible and the minimax designs are robust against bias caused by model misspecification.
基金the NSFC(60473034)the Science Foundation of Zhejiang Province(Y604003).
文摘The spherical approximation between two nested reproducing kernels Hilbert spaces generated from different smooth kernels is investigated. It is shown that the functions of a space can be approximated by that of the subspace with better smoothness. Furthermore, the upper bound of approximation error is given.
文摘This paper presents a method of lines solution based on the reproducing kernel Hilbert space method to the nonlinear one-dimensional Klein-Gordon equation that arises in many scientific fields areas.Our method uses discretization of the partial derivatives of the space variable to get a system of ODEs in the time variable and then solve the system of ODEs using reproducing kernel Hilbert space method.Consider two examples to validate the proposed method.Compare the results with the exact solution by calculating the error norms L_(2) and L_(∞) at various time levels.The results show that the presented scheme is a systematic,effective and powerful technique for the solution of Klein-Gordon equation.
基金supported by National Natural Science Foundation of China under Grant No.11771447。
文摘The estimation of high dimensional covariance matrices is an interesting and important research topic for many empirical time series problems such as asset allocation. To solve this dimension dilemma, a factor structure has often been taken into account. This paper proposes a dynamic factor structure whose factor loadings are generated in reproducing kernel Hilbert space(RKHS), to capture the dynamic feature of the covariance matrix. A simulation study is carried out to demonstrate its performance. Four different conditional variance models are considered for checking the robustness of our method and solving the conditional heteroscedasticity in the empirical study. By exploring the performance among eight introduced model candidates and the market baseline, the empirical study from 2001 to 2017 shows that portfolio allocation based on this dynamic factor structure can significantly reduce the variance, i.e., the risk, of portfolio and thus outperform the market baseline and the ones based on the traditional factor model.
基金supported in part by National Natural Science Foundation of China(Grant No.11871438)supported in part by the HKRGC GRF Nos.12300218,12300519,17201020,17300021,C1013-21GF,C7004-21GFJoint NSFC-RGC N-HKU76921。
文摘We consider a gradient iteration algorithm for prediction of functional linear regression under the framework of reproducing kernel Hilbert spaces.In the algorithm,we use an early stopping technique,instead of the classical Tikhonov regularization,to prevent the iteration from an overfitting function.Under mild conditions,we obtain upper bounds,essentially matching the known minimax lower bounds,for excess prediction risk.An almost sure convergence is also established for the proposed algorithm.
基金Supported by the Indigenous Innovation’s Capability Development Program of Huizhou University(HZU202003,HZU202020)Natural Science Foundation of Guangdong Province(2022A1515011463)+2 种基金the Project of Educational Commission of Guangdong Province(2023ZDZX1025)National Natural Science Foundation of China(12271473)Guangdong Province’s 2023 Education Science Planning Project(Higher Education Special Project)(2023GXJK505)。
文摘Complementary-label learning(CLL)aims at finding a classifier via samples with complementary labels.Such data is considered to contain less information than ordinary-label samples.The transition matrix between the true label and the complementary label,and some loss functions have been developed to handle this problem.In this paper,we show that CLL can be transformed into ordinary classification under some mild conditions,which indicates that the complementary labels can supply enough information in most cases.As an example,an extensive misclassification error analysis was performed for the Kernel Ridge Regression(KRR)method applied to multiple complementary-label learning(MCLL),which demonstrates its superior performance compared to existing approaches.
文摘We provide a kernel-regularized method to give theory solutions for Neumann boundary value problem on the unit ball. We define the reproducing kernel Hilbert space with the spherical harmonics associated with an inner product defined on both the unit ball and the unit sphere, construct the kernel-regularized learning algorithm from the view of semi-supervised learning and bound the upper bounds for the learning rates. The theory analysis shows that the learning algorithm has better uniform convergence according to the number of samples. The research can be regarded as an application of kernel-regularized semi-supervised learning.
文摘In this paper,an efficient multi-step scheme is presented based on reproducing kernel Hilbert space(RKHS)theory for solving ordinary stiff differential systems.The solution methodology depends on reproducing kernel functions to obtain analytic solutions in a uniform formfor a rapidly convergent series in the posed Sobolev space.Using the Gram-Schmidt orthogonality process,complete orthogonal essential functions are obtained in a compact field to encompass Fourier series expansion with the help of kernel properties reproduction.Consequently,by applying the standard RKHS method to each subinterval,approximate solutions that converge uniformly to the exact solutions are obtained.For this purpose,several numerical examples are tested to show proposed algorithm’s superiority,simplicity,and efficiency.The gained results indicate that themulti-step RKHSmethod is suitable for solving linear and nonlinear stiffness systems over an extensive duration and giving highly accurate outcomes.
基金the National 973 Key Fundamental Research Project of China (Grant No.2002CB312200)
文摘By combining the wavelet decomposition with kernel method, a practical approach of universal multiscale wavelet kernels constructed in reproducing kernel Hilbert space (RKHS) is discussed, and an identification scheme using wavelet support vector machines (WSVM) estimator is proposed for nordinear dynamic systems. The good approximating properties of wavelet kernel function enhance the generalization ability of the proposed method, and the comparison of some numerical experimental results between the novel approach and some existing methods is encouraging.
基金University of Macao Multi-Year Research Grant Ref.No MYRG2016-00053-FST and MYRG2018-00168-FSTthe Science and Technology Development Fund,Macao SAR FDCT/0123/2018/A3.
文摘In this paper,the weak pre-orthogonal adaptive Fourier decomposition(W-POAFD)method is applied to solve fractional boundary value problems(FBVPs)in the reproducing kernel Hilbert spaces(RKHSs)W_(0)^(4)[0,1] and W^(1)[0,1].The process of the W-POAFD is as follows:(i)choose a dictionary and implement the pre-orthogonalization to all the dictionary elements;(ii)select points in[0,1]by the weak maximal selection principle to determine the corresponding orthonormalized dictionary elements iteratively;(iii)express the analytical solution as a linear combination of these determined dictionary elements.Convergence properties of numerical solutions are also discussed.The numerical experiments are carried out to illustrate the accuracy and efficiency of W-POAFD for solving FBVPs.
文摘In this paper, we apply the new algorithm of reproducing kernel method to give the approximate solution to some functional-differential equations. The numerical results demonstrate the accuracy of the proposed algorithm.