期刊文献+
共找到69篇文章
< 1 2 4 >
每页显示 20 50 100
基于Kernel Rank-order距离的重构权重局部线性嵌入算法 被引量:5
1
作者 鞠玲 王正群 +1 位作者 徐春林 杨洋 《计算机应用与软件》 北大核心 2020年第8期149-155,206,共8页
针对局部线性嵌入算法(Local Linear Embedding,LLE)短路、离群点影响大和结构信息缺乏等问题,提出基于Kernel Rank-order距离的重构权重局部线性嵌入算法(Reconstruction weight Local Linear Embedding algorithm based on Kernel Ran... 针对局部线性嵌入算法(Local Linear Embedding,LLE)短路、离群点影响大和结构信息缺乏等问题,提出基于Kernel Rank-order距离的重构权重局部线性嵌入算法(Reconstruction weight Local Linear Embedding algorithm based on Kernel Rank-order distance,KRLLE)。用核函数将样本点映射到高维使其更加线性可分,进而获得较好的近邻点集;计算重构权重系数进而得到加权重构权重,重构权重系数根据两点间相关性越大对重构贡献越大的特性来减小离群点的影响,并利用两点间的欧氏距离与测地线距离之比有效地将短路点排除在外;根据加权重构权重得到低维嵌入坐标。在ORL、Yale人脸库和MNIST手写体数据库上的实验表明,KRLLE对离群点具有更好的鲁棒性并且由于增加了结构信息,识别率得到了提高。 展开更多
关键词 人脸识别 流形学习 权重改进 局部线性嵌入算法 降维
下载PDF
基于SKLLE和SVM的人脸表情识别 被引量:10
2
作者 晏勇 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期55-60,共6页
为有效提取人脸表情图像特征并降低特征向量维数,该文提出一种基于监督核局部线性嵌入(Supervised Kernel Locally Linear Embedding,SKLLE)和支持向量机(Support Vector Machine,SVM)相结合的降维和分类方法.利用人脸表情图像数据本身... 为有效提取人脸表情图像特征并降低特征向量维数,该文提出一种基于监督核局部线性嵌入(Supervised Kernel Locally Linear Embedding,SKLLE)和支持向量机(Support Vector Machine,SVM)相结合的降维和分类方法.利用人脸表情图像数据本身的非线性流形结构信息和标签信息实现维数约简,提取低维嵌入特征用于人脸表情识别,采用支持向量机代替传统的K近邻分类器.基于JAFFE人脸表情图像库和Cohn-Kanade人脸表情数据库的实验结果表明,该方法可以很好地实现维数约简,达到较高的识别率,有效地提高了人脸表情识别的性能. 展开更多
关键词 人脸表情识别 流形学习 局部线性嵌入 监督核局部线性嵌入 支持向量机
下载PDF
局部线性下的函数型主成分聚类算法 被引量:1
3
作者 陈海龙 胡晓雪 《统计与决策》 CSSCI 北大核心 2024年第5期39-44,共6页
函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成... 函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成分分析模型(LLE Function Principle Component Analysis,LFPCA)。首先,采用函数型主成分分析法作为降维目标方法,改进了FPCA的算法模型,通过将LLE算法的权重系数矩阵与函数型主成分定义相结合,构建出一个适用于非线性空间下的聚类算法;其次,在求解算法的过程中定义了函数型主成分得分,并结合EM算法构建出GMM模型来近似函数型算法的概率密度函数,使模型更高效且适用性更强;最后,通过随机模拟实验及应用分析验证了LFPCA算法模型在真实数据集上具有良好的聚类效能。 展开更多
关键词 函数型主成分聚类 局部线性嵌入算法 EM算法 GMM模型
下载PDF
考虑起飞工况的航空发动机性能退化预测研究
4
作者 赵洪利 许博文 张青 《推进技术》 EI CSCD 北大核心 2024年第1期45-53,共9页
针对现阶段航空发动机性能退化建模研究没有考虑起飞工况的影响问题,提出了基于修正的非线性维纳过程发动机性能退化建模方法。该方法结合了同类型号发动机的历史性能退化数据与个体发动机的实时退化和工况数据。首先,考虑发动机每次起... 针对现阶段航空发动机性能退化建模研究没有考虑起飞工况的影响问题,提出了基于修正的非线性维纳过程发动机性能退化建模方法。该方法结合了同类型号发动机的历史性能退化数据与个体发动机的实时退化和工况数据。首先,考虑发动机每次起飞的工况不同,把工况修正引入非线性维纳过程建立发动机的性能退化模型。然后利用极大似然估计方法求得退化模型离线估计值,基于贝叶斯理论对退化参数进行在线更新,最后基于局部线性嵌入算法,对工况参数进行融合构建工况因子,修正退化参数,实现了基于起飞工况的单台发动机性能退化预测。结果表明,采用融合工况因子修正模型,与未修正和压比修正模型相比,平均绝对百分比误差分别降低1.50%和1.01%。证明融合工况因子修正模型能降低发动机起飞工况差异和仅用单工况参数修正所造成的预测误差,可以用来辅助指导下发决策。 展开更多
关键词 航空发动机 性能退化 工况修正 非线性维纳 局部线性嵌入算法
下载PDF
基于自适应邻域参数的局部线性嵌入算法的脑力负荷分类
5
作者 苏峥 曲洪权 +2 位作者 柳长安 庞丽萍 陈丽莉 《科学技术与工程》 北大核心 2024年第26期11140-11147,共8页
近年来,随着人工智能领域技术的不断发展,人机交互领域吸引了更多学者的关注。研究表明由脑电图(electroencephalogram,EEG)提取的特征功率谱密度对于脑力负荷的变化比较敏感,但由于其维数过高,容易造成数据灾难。局部线性嵌入(locally ... 近年来,随着人工智能领域技术的不断发展,人机交互领域吸引了更多学者的关注。研究表明由脑电图(electroencephalogram,EEG)提取的特征功率谱密度对于脑力负荷的变化比较敏感,但由于其维数过高,容易造成数据灾难。局部线性嵌入(locally linear embedding,LLE)是常用的非线性降维算法,该算法弥补了传统线性降维算法无法发现数据中非线性结构关系的不足。由于不同数据集中样本分布的稀疏程度和扭曲程度不同,在使用LLE对不同数据集进行降维时的最佳邻域参数也不同。利用样本点之间的欧氏距离和测地距离的关系量化了数据集的扭曲程度,自适应邻域参数的局部线性嵌入算法(variable k-locally linear embedding,VK-LLE)动态地调整每一个数据集的最佳邻域参数,解决了样本分布扭曲程度不同对降维效果造成的干扰。实验结果表明,经过VK-LLE降维后的数据使用支持向量机(support vector machine,SVM)分类精度普遍高于经过传统LLE的降维后再使用SVM分类的精度,对复杂数据集有更强的适应能力。 展开更多
关键词 脑力负荷 局部线性嵌入算法 邻域参数 测地距离
下载PDF
基于局部线性嵌入和深度森林算法的电力客户投诉预测模型 被引量:1
6
作者 张梅 保富 《电测与仪表》 北大核心 2024年第1期107-112,共6页
由于电力市场竞争日益激烈,用户对服务质量的要求不断提高,用户投诉量持续上升。在基于大数据的电力客户投诉预测模型的体系结构基础上,提出一种基于局部线性嵌入和深度森林算法的电力客户投诉预测方法。采用局部线性嵌入算法对客户投... 由于电力市场竞争日益激烈,用户对服务质量的要求不断提高,用户投诉量持续上升。在基于大数据的电力客户投诉预测模型的体系结构基础上,提出一种基于局部线性嵌入和深度森林算法的电力客户投诉预测方法。采用局部线性嵌入算法对客户投诉预测模型的输入特征向量进行降维处理,减少计算量和避免陷入局部最优解;对降维后的投诉预测特征向量进行多粒度扫描,提高其表征学习能力;基于级联森林建立深度森林算法模型,实现客户投诉预测。实际数据的仿真结果表明,与不进行降维处理及其他预测模型相比,文中所提出的预测模型可以更准确地预测客户投诉趋势,为电力企业客户投诉分析和预测提供了参考依据。 展开更多
关键词 电力客户 投诉预测模型 局部线性嵌入 深度森林算法
下载PDF
基于电网多源数据的电力知识图谱构建方法
7
作者 张凡 陈浩敏 +1 位作者 姚森敬 邓远发 《电子设计工程》 2024年第9期175-178,183,共5页
电力知识图谱构建方法重复采集电网多源数据,针对构建得到的知识图谱置信度过小的问题,设计一种基于电网多源数据的电力知识图谱构建方法。通过设定实体电网多源数据采集架构,采用局部线性嵌入算法筛选重复采集的电网多源数据。将电力... 电力知识图谱构建方法重复采集电网多源数据,针对构建得到的知识图谱置信度过小的问题,设计一种基于电网多源数据的电力知识图谱构建方法。通过设定实体电网多源数据采集架构,采用局部线性嵌入算法筛选重复采集的电网多源数据。将电力知识间的关系转变可识别特征数值,抽取多源数据中的电力知识划分图谱层级,构建电力知识图谱结构。结合电力知识采集环境完成实验,实验结果表明,文中设计的构建方法准确率为97%,召回率为0.78%,F值为93,满足电力知识图谱的构建需求。 展开更多
关键词 电网多源数据 知识图谱 局部线性嵌入算法 逻辑参数
下载PDF
高维空间下烟叶质量相似性度量方法研究 被引量:6
8
作者 曹鹏云 付秋娟 +1 位作者 宫会丽 杨宁 《中国烟草科学》 CSCD 2013年第3期84-88,共5页
为判断高维数据空间下烟叶质量相似性,本研究提出了一种基于核变换和测地距离线的局部线性嵌入的相似性度量计算方法,并以450个复烤片烟样品质量分布特征为材料进行特征分析与相似性度量实验验证。结果表明,主成分分析(PCA)的线性降维... 为判断高维数据空间下烟叶质量相似性,本研究提出了一种基于核变换和测地距离线的局部线性嵌入的相似性度量计算方法,并以450个复烤片烟样品质量分布特征为材料进行特征分析与相似性度量实验验证。结果表明,主成分分析(PCA)的线性降维方法虽能体现原料质量数据内在的非线性特征,但样本点重叠较多,而测地线局部线性嵌入降维方法则能很好表征样本点的分类能力和对领域数据的适用性;在相似性度量时,嵌入映射方法在同产区、同部位、相近等级类烟叶搜索到的数量大于在原始数据集和PCA变换后数据集上搜索得到的结果,该方法能够有效解决传统原料相似性度量方法中要求低维空间保距映射的问题。 展开更多
关键词 相似性度量 局部线性嵌入 测地线距离 核方法
下载PDF
基于有监督核局部线性嵌入的面部表情识别 被引量:5
9
作者 黄鸿 李见为 冯海亮 《光学精密工程》 EI CAS CSCD 北大核心 2008年第8期1471-1477,共7页
提出了一种新的有监督核局部线性嵌入算法(SKLLE),并将算法应用于面部表情识别中。该算法通过非线性核映射将人脸图像样本投影到高维核空间,然后将人脸图像局部流形的结构信息和样本的类别信息有效地结合进行维数约简,提取低维鉴别流形... 提出了一种新的有监督核局部线性嵌入算法(SKLLE),并将算法应用于面部表情识别中。该算法通过非线性核映射将人脸图像样本投影到高维核空间,然后将人脸图像局部流形的结构信息和样本的类别信息有效地结合进行维数约简,提取低维鉴别流形特征用于表情分类。SKLLE算法不仅能发现嵌入了高维人脸图像空间的低维表情子流形,增强了局部类间的联系,而且对新样本有较好的泛化性。基于JAFFE面部表情库的实验结果表明,该方法能很好地实现维数约简,达到最高识别率(100%)所需的鉴别维数仅为二维,有效地提高了面部表情识别的性能。 展开更多
关键词 流形学习 核技巧 局部线性嵌入 有监督学习 面部表情识别
下载PDF
半监督稀疏鉴别核局部线性嵌入的非线性过程故障检测 被引量:3
10
作者 任世锦 李新玉 +2 位作者 徐桂云 潘剑寒 杨茂云 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2018年第4期49-58,共10页
复杂过程往往受到运行状态复杂、工作条件恶劣等因素影响,过程数据具有很强的非线性、随机性和流形结构.近年来,核局部线性嵌入(kernel locally linear embedding,KLLE)已经成功应用于复杂过程故障检测.然而KLLE是一种无监督流形学习算... 复杂过程往往受到运行状态复杂、工作条件恶劣等因素影响,过程数据具有很强的非线性、随机性和流形结构.近年来,核局部线性嵌入(kernel locally linear embedding,KLLE)已经成功应用于复杂过程故障检测.然而KLLE是一种无监督流形学习算法,能够保持样本的局部几何信息,忽视了总体数据样本集全局/非局部鉴别信息.针对上述问题,本文提出一种新的半监督稀疏鉴别核局部线性嵌入(semi-supervised sparse discriminantKLLE,SSDKLLE)算法并用于非线性工业过程故障检测.本文主要贡献如下:(1)把半监督学习与Fisher鉴别分析(fisher discriminant analysis,FDA)引入到KLLE,有效地利用了总体数据集几何鉴别信息,提高了算法对不同类别数据的分离性;(2)基于稀疏表示通过重构优化方法对信号自适应稀疏表达的优点,利用稀疏表示自适应选择最近邻样本以及数目,提高算法鲁棒性和局部保持性能;(3)引入局部邻域处理以及核技巧策略降低过程工况数据变化对监测算法的影响,提高非线性多工况过程监测方法的性能.基于UCI数据和TE平台的仿真实验结果验证了所提算法的有效性. 展开更多
关键词 过程故障检测 核局部线性嵌入 半监督学习 FISHER鉴别分析 稀疏表示
下载PDF
基于局部线性嵌入算法的柴油机故障诊断研究 被引量:3
11
作者 董安 潘宏侠 龚明 《计算机工程与应用》 CSCD 2013年第22期236-240,共5页
为提高柴油机故障诊断准确率和效率,提出了改进局部线性嵌入算法的柴油机诊断系统。应用小波包能量谱分析方法提取某柴油机振动信号的特征值,将提取的高维特征向量映射到低维空间上,能将高维特征向量进行优化,即特征值的二次提取。该改... 为提高柴油机故障诊断准确率和效率,提出了改进局部线性嵌入算法的柴油机诊断系统。应用小波包能量谱分析方法提取某柴油机振动信号的特征值,将提取的高维特征向量映射到低维空间上,能将高维特征向量进行优化,即特征值的二次提取。该改进算法可模糊化近邻点k的选择,从而提高计算的速度,并应用SOM-BP神经网络进行故障识别。实验表明,经过局部线性嵌入算法的特征值优化,能减少SOM-BP神经网络的输入节点,可在一定程度上提高故障识别的效率和准确率。 展开更多
关键词 局部线性嵌入算法 特征值优化 SOM BP神经网络
下载PDF
一种在源数据稀疏情况下的数据降维算法 被引量:4
12
作者 宋欣 叶世伟 《计算机工程与应用》 CSCD 北大核心 2007年第28期181-183,186,共4页
流形学习方法是根据流形的定义提出的一种非线性数据降维方法,主要思想是发现嵌入在高维数据空间的低维光滑流形。从分析基于流形学习理论的局部线性嵌入算法入手,针对传统的局部线性嵌入算法在源数据稀疏时会失效的缺点,提出了基于局... 流形学习方法是根据流形的定义提出的一种非线性数据降维方法,主要思想是发现嵌入在高维数据空间的低维光滑流形。从分析基于流形学习理论的局部线性嵌入算法入手,针对传统的局部线性嵌入算法在源数据稀疏时会失效的缺点,提出了基于局部线性逼近思想的流形学习算法,并在S-曲线上采样测试取得良好降维效果。 展开更多
关键词 降维算法 局部线性逼近 流形学习 局部线性嵌入
下载PDF
基于LLE与BA-Elman的瓦斯涌出量动态预测研究 被引量:4
13
作者 付华 代巍 《传感技术学报》 CAS CSCD 北大核心 2016年第9期1383-1388,共6页
针对瓦斯涌出量受诸多因素影响,彼此间存在复杂的非线性关系导致预测精度不高这一问题,提出基于相关分析理论和局部线性嵌入理论的Elman网络瓦斯涌出量动态预测方法。在对监测指标进行相关性分析的基础上,用局部线性嵌入理论实现瓦斯涌... 针对瓦斯涌出量受诸多因素影响,彼此间存在复杂的非线性关系导致预测精度不高这一问题,提出基于相关分析理论和局部线性嵌入理论的Elman网络瓦斯涌出量动态预测方法。在对监测指标进行相关性分析的基础上,用局部线性嵌入理论实现瓦斯涌出量影响因素从高维空间至低维空间的映射,进而重构影响瓦斯涌出量的有效因子,并将其作为Elman网络预测模型的输入矢量,以降低模型结构的复杂度,同时用蝙蝠算法全局优化Elman模型以提高预测的精度和泛化能力。试验结果表明该动态预测模型泛化能力强,预测精度高,适用于实际工作中对瓦斯涌出量的预测。 展开更多
关键词 瓦斯涌出量 动态预测 相关分析 局部线性嵌入理论 蝙蝠算法 ELMAN神经网络
下载PDF
基于SVM分类的边缘提取算法 被引量:2
14
作者 张萍 王琳 游星 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第2期247-252,共6页
通过分析同类数据点在空间中的几何形态,从数据点集所构成几何形态的凹凸性着手,提出边界提取算法并对高维数据进行分类。针对现实生活中的高维数据,利用局部线性嵌入将数据进行降维处理,得到低维特征数据。在此基础上,对于单分类数据集... 通过分析同类数据点在空间中的几何形态,从数据点集所构成几何形态的凹凸性着手,提出边界提取算法并对高维数据进行分类。针对现实生活中的高维数据,利用局部线性嵌入将数据进行降维处理,得到低维特征数据。在此基础上,对于单分类数据集,用数据集表面的点的近邻样本与过该点的切平面之间的关系寻找边界点;对于多分类数据集,利用贝叶斯后验概率来寻找边界重复的点,以此更快达到提取边界点的目的。由此可以粗略筛选出边界点。为去除不重要的边界点,降低分类误差,通过构造最优超平面和支持向量机对边界点赋予权重,并设置阈值去除不重要的边界点,由此达到用较少的边界点准确分类数据的目的。通过100个测试样本进行分类测试并计算其分类准确率,验证了此分类方法的可行性。 展开更多
关键词 局部线性嵌入 近邻样本 贝叶斯后验概率 支持向量 边界提取算法
下载PDF
基于局部线性嵌入的半监督仿射传播聚类算法 被引量:3
15
作者 赵小强 谢亚萍 《兰州理工大学学报》 CAS 北大核心 2015年第1期96-100,共5页
针对运用半监督仿射传播聚类算法处理高维数据时聚类精度低和计算量大的问题,提出一种基于局部线性嵌入的半监督仿射传播聚类算法.该算法首先通过LLE算法将高维输入数据集映射到低维空间得到低维数据集,计算低维数据集的相似度矩阵,再... 针对运用半监督仿射传播聚类算法处理高维数据时聚类精度低和计算量大的问题,提出一种基于局部线性嵌入的半监督仿射传播聚类算法.该算法首先通过LLE算法将高维输入数据集映射到低维空间得到低维数据集,计算低维数据集的相似度矩阵,再用半监督算法调整相似度矩阵,最后用仿射传播聚类算法对低维数据进行聚类分析.仿真结果表明,本文提出的算法与半监督仿射传播聚类算法相比,在处理高维数据时聚类效果更好,精度更高,迭代次数更少. 展开更多
关键词 数据挖掘 半监督 仿射传播聚类 局部线性嵌入算法
下载PDF
基于局部线性重构与高斯核映射的聚类研究 被引量:3
16
作者 马元元 郝海涛 杨延娇 《控制工程》 CSCD 北大核心 2017年第7期1493-1500,共8页
针对现有的基于约束的半监督聚类算法获得的聚类结果质量不足的问题,提出一种基于高斯核映射与局部线性重构的主动学习聚类算法。首先利用高斯核映射与局部线性嵌入进行流行学习,将对局部线性重构重要性过低以及非平坦区域的样本作为不... 针对现有的基于约束的半监督聚类算法获得的聚类结果质量不足的问题,提出一种基于高斯核映射与局部线性重构的主动学习聚类算法。首先利用高斯核映射与局部线性嵌入进行流行学习,将对局部线性重构重要性过低以及非平坦区域的样本作为不重要的样本;然后,为查询选择设立了1个考虑样本所需查询数量的新判断条件;最终,建立must-link并将平坦区域的信息传递至半监督聚类算法。实验结果证明,对于小规模数据与大规模数据,该算法学习的成对约束均可获得较好的聚类结果。 展开更多
关键词 高斯核映射 局部线性重构 聚类算法 成对约束 查询选择
下载PDF
基于BAS优化PNN网络的电机轴承故障诊断方法 被引量:4
17
作者 刘霞 王鑫宇 +1 位作者 路敬祎 李其浩 《吉林大学学报(信息科学版)》 CAS 2021年第4期439-444,共6页
针对电机轴承故障识别准确率不高问题,提出了一种天牛须搜索算法(BAS:Beetle Antennae Search)与概率神经网络(PNN:Probabilistic Neural Network)相结合的滚动轴承故障诊断方法。该方法结合LLE(Locally Linear Embedding)算法得到振动... 针对电机轴承故障识别准确率不高问题,提出了一种天牛须搜索算法(BAS:Beetle Antennae Search)与概率神经网络(PNN:Probabilistic Neural Network)相结合的滚动轴承故障诊断方法。该方法结合LLE(Locally Linear Embedding)算法得到振动信号的敏感特征,保证振动信号的可靠性和敏感性。并采用天牛须搜索算法对PNN网络中的平滑参数进行寻优,避免主观经验选取参数对诊断结果的影响。通过实验验证了该方法的有效性,可实现故障类型准确判别。 展开更多
关键词 电机轴承 故障诊断 天牛须搜索算法 概率神经网络 局部线性嵌入
下载PDF
LLE与核Fisher判别分析结合的人脸识别研究 被引量:1
18
作者 万源 周达丽 童恒庆 《武汉理工大学学报(信息与管理工程版)》 CAS 2013年第6期799-803,824,共6页
针对人脸识别问题提出了将LLE与核Fisher相结合的识别方法 LLEKF,先应用LLE方法将样本和待测试的人脸图像集降低到一定维数,再利用核Fisher判别法通过选择合适的核函数,确定最优参数,对降维后的样本图像进行训练,并对降维后的人脸图像... 针对人脸识别问题提出了将LLE与核Fisher相结合的识别方法 LLEKF,先应用LLE方法将样本和待测试的人脸图像集降低到一定维数,再利用核Fisher判别法通过选择合适的核函数,确定最优参数,对降维后的样本图像进行训练,并对降维后的人脸图像进行分类。实验证明,利用LLE低维嵌入后的数据能够更好地保持原人脸数据的非线性特征,并降低特征提取的时间,再经过核Fisher进行分类,明显提高了分类的效率。 展开更多
关键词 人脸识别 局部线性嵌入 核FISHER判别分析 流形学习
下载PDF
核方法与流形学习在心电识别中的研究 被引量:1
19
作者 李学华 舒兰 《计算机工程与应用》 CSCD 北大核心 2009年第20期20-22,共3页
结合核方法和局部线性嵌入(LLE)方法,提出了一种基于核局部线性嵌入方法,该方法克服了局部线性嵌入方法由于心电特征分布不均衡造成的不稳定问题。结合支持向量机在MIT-BIH心律失常标准数据库进行实验,并利用PCA和LLE进行特征提取比较,... 结合核方法和局部线性嵌入(LLE)方法,提出了一种基于核局部线性嵌入方法,该方法克服了局部线性嵌入方法由于心电特征分布不均衡造成的不稳定问题。结合支持向量机在MIT-BIH心律失常标准数据库进行实验,并利用PCA和LLE进行特征提取比较,验证了该方法的有效性及优势。 展开更多
关键词 核方法 局部线性嵌入 支持向量机 心电图识别
下载PDF
一种融合聚类的监督局部线性嵌入算法研究 被引量:2
20
作者 王东 张强 严亮 《半导体光电》 北大核心 2017年第3期419-424,共6页
监督局部线性嵌入算法(SLLE)通过数据点的标签信息进行高维数据在低维特征空间的映射,针对SLLE在均匀化高维数据的分布和最小化重构代价时,忽略类内偏离总体分布的稀疏离散数据在线性重构过程中可能错误地投影在其他超平面的情形,引入Km... 监督局部线性嵌入算法(SLLE)通过数据点的标签信息进行高维数据在低维特征空间的映射,针对SLLE在均匀化高维数据的分布和最小化重构代价时,忽略类内偏离总体分布的稀疏离散数据在线性重构过程中可能错误地投影在其他超平面的情形,引入Kmeans++算法调整样本间距离,进行最优近邻点的选择,从而更有效地反映数据在高维空间中的实际分布,使降维后的数据具备更好的可分性。通过ORL以及Yale人脸数据集上的仿真实验,结果显示,该方法具有更强的泛化能力及更高的识别率。 展开更多
关键词 降维 监督局部线性嵌入算法 最优近邻点 人脸识别 聚类算法
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部