An approach for batch processes monitoring and fault detection based on multiway kernel partial least squares(MKPLS) was presented.It is known that conventional batch process monitoring methods,such as multiway partia...An approach for batch processes monitoring and fault detection based on multiway kernel partial least squares(MKPLS) was presented.It is known that conventional batch process monitoring methods,such as multiway partial least squares(MPLS),are not suitable due to their intrinsic linearity when the variations are nonlinear.To address this issue,kernel partial least squares(KPLS) was used to capture the nonlinear relationship between the latent structures and predictive variables.In addition,KPLS requires only linear algebra and does not involve any nonlinear optimization.In this paper,the application of KPLS was extended to on-line monitoring of batch processes.The proposed batch monitoring method was applied to a simulation benchmark of fed-batch penicillin fermentation process.And the results demonstrate the superior monitoring performance of MKPLS in comparison to MPLS monitoring.展开更多
Based on continuum power regression(CPR) method, a novel derivation of kernel partial least squares(named CPR-KPLS) regression is proposed for approximating arbitrary nonlinear functions.Kernel function is used to map...Based on continuum power regression(CPR) method, a novel derivation of kernel partial least squares(named CPR-KPLS) regression is proposed for approximating arbitrary nonlinear functions.Kernel function is used to map the input variables(input space) into a Reproducing Kernel Hilbert Space(so called feature space),where a linear CPR-PLS is constructed based on the projection of explanatory variables to latent variables(components). The linear CPR-PLS in the high-dimensional feature space corresponds to a nonlinear CPR-KPLS in the original input space. This method offers a novel extension for kernel partial least squares regression(KPLS),and some numerical simulation results are presented to illustrate the feasibility of the proposed method.展开更多
Near-infrared spectroscopy coupled with kernel partial least squares-discriminant analysis was used to rapidly screen water containing malathion. In the wavenumber of 4348 cm-1 to 9091 cm-1, the overall correct classi...Near-infrared spectroscopy coupled with kernel partial least squares-discriminant analysis was used to rapidly screen water containing malathion. In the wavenumber of 4348 cm-1 to 9091 cm-1, the overall correct classification rate of kernel partial least squares-discriminant analysis was 100% for training set, and 100% for test set, with the lowest concentration detected malathion residues in water being 1 μg·ml-1. Kernel partial least squares-discriminant analysis was able to have a good performance in classifying data in nonlinear systems. It was inferred that Near-infrared spectroscopy coupled with the kernel partial least squares-discriminant analysis had a potential in rapid screening other pesticide residues in water.展开更多
针对过程非线性、基于历史数据构建的离线模型泛化性差以及基于滑动窗口和每样本递推更新的在线建模方法难以均衡建模精度和建模速度等问题,提出了一种在线核偏最小二乘(On-line kernel partial least squares,OLKPLS)建模方法.该方法...针对过程非线性、基于历史数据构建的离线模型泛化性差以及基于滑动窗口和每样本递推更新的在线建模方法难以均衡建模精度和建模速度等问题,提出了一种在线核偏最小二乘(On-line kernel partial least squares,OLKPLS)建模方法.该方法依据新样本与建模样本间的近似线性依靠(Approximate linear dependence,ALD)值和代表工业过程特性漂移幅度的阈值,选择有价值样本更新KPLS模型,并采用合成数据和Benchmark平台数据对该方法进行了仿真验证.针对基于离线历史数据建立的融合多传感器信息的磨机负荷参数集成模型难以适应磨矿过程时变特性的问题,提出了基于OLKPLS和在线自适应加权融合算法的在线集成建模方法,并通过实验球磨机的实际运行数据仿真验证了方法的有效性.展开更多
作为钢铁冶金制造的核心工序,高炉炼铁是典型的高能耗过程,其运行能耗约占钢铁总能耗的50%以上,其中,80%的能耗是焦炭和煤粉等燃料消耗.因此,对表征高炉燃料消耗的燃料比参数进行监测,并尽可能早地识别影响燃料比异常波动的关键因素,对...作为钢铁冶金制造的核心工序,高炉炼铁是典型的高能耗过程,其运行能耗约占钢铁总能耗的50%以上,其中,80%的能耗是焦炭和煤粉等燃料消耗.因此,对表征高炉燃料消耗的燃料比参数进行监测,并尽可能早地识别影响燃料比异常波动的关键因素,对于高炉炼铁过程的节能降耗具有重要意义.本文针对先验故障知识少的高炉燃料比监测与异常识别难题,提出一种基于核偏最小二乘(Kernel partial least squares,KPLS)鲁棒重构误差的故障识别方法.该方法首先建立过程变量与监测变量的KPLS监测模型,然后根据非线性映射空间的协方差矩阵和核空间Gram矩阵之间的关系,反向估计原始空间变量的正常估值.为了增强算法的鲁棒性,采用迭代去噪算法减少异常数据对原始空间正常估值的影响.通过利用原始空间正常估值和真实值来构造故障识别指标,并给出故障识别指标的控制限.基于实际工业数据的高炉数据实验表明所提方法不仅可以监测出正常工况下影响燃料比异常变化的潜在因素,还可识别出异常工况下影响燃料比异常变化的关键因素,具有很好的工程应用前景.展开更多
基金National Natural Science Foundation of China (No. 61074079)Shanghai Leading Academic Discipline Project,China (No.B504)
文摘An approach for batch processes monitoring and fault detection based on multiway kernel partial least squares(MKPLS) was presented.It is known that conventional batch process monitoring methods,such as multiway partial least squares(MPLS),are not suitable due to their intrinsic linearity when the variations are nonlinear.To address this issue,kernel partial least squares(KPLS) was used to capture the nonlinear relationship between the latent structures and predictive variables.In addition,KPLS requires only linear algebra and does not involve any nonlinear optimization.In this paper,the application of KPLS was extended to on-line monitoring of batch processes.The proposed batch monitoring method was applied to a simulation benchmark of fed-batch penicillin fermentation process.And the results demonstrate the superior monitoring performance of MKPLS in comparison to MPLS monitoring.
文摘Based on continuum power regression(CPR) method, a novel derivation of kernel partial least squares(named CPR-KPLS) regression is proposed for approximating arbitrary nonlinear functions.Kernel function is used to map the input variables(input space) into a Reproducing Kernel Hilbert Space(so called feature space),where a linear CPR-PLS is constructed based on the projection of explanatory variables to latent variables(components). The linear CPR-PLS in the high-dimensional feature space corresponds to a nonlinear CPR-KPLS in the original input space. This method offers a novel extension for kernel partial least squares regression(KPLS),and some numerical simulation results are presented to illustrate the feasibility of the proposed method.
文摘Near-infrared spectroscopy coupled with kernel partial least squares-discriminant analysis was used to rapidly screen water containing malathion. In the wavenumber of 4348 cm-1 to 9091 cm-1, the overall correct classification rate of kernel partial least squares-discriminant analysis was 100% for training set, and 100% for test set, with the lowest concentration detected malathion residues in water being 1 μg·ml-1. Kernel partial least squares-discriminant analysis was able to have a good performance in classifying data in nonlinear systems. It was inferred that Near-infrared spectroscopy coupled with the kernel partial least squares-discriminant analysis had a potential in rapid screening other pesticide residues in water.
文摘针对过程非线性、基于历史数据构建的离线模型泛化性差以及基于滑动窗口和每样本递推更新的在线建模方法难以均衡建模精度和建模速度等问题,提出了一种在线核偏最小二乘(On-line kernel partial least squares,OLKPLS)建模方法.该方法依据新样本与建模样本间的近似线性依靠(Approximate linear dependence,ALD)值和代表工业过程特性漂移幅度的阈值,选择有价值样本更新KPLS模型,并采用合成数据和Benchmark平台数据对该方法进行了仿真验证.针对基于离线历史数据建立的融合多传感器信息的磨机负荷参数集成模型难以适应磨矿过程时变特性的问题,提出了基于OLKPLS和在线自适应加权融合算法的在线集成建模方法,并通过实验球磨机的实际运行数据仿真验证了方法的有效性.
文摘作为钢铁冶金制造的核心工序,高炉炼铁是典型的高能耗过程,其运行能耗约占钢铁总能耗的50%以上,其中,80%的能耗是焦炭和煤粉等燃料消耗.因此,对表征高炉燃料消耗的燃料比参数进行监测,并尽可能早地识别影响燃料比异常波动的关键因素,对于高炉炼铁过程的节能降耗具有重要意义.本文针对先验故障知识少的高炉燃料比监测与异常识别难题,提出一种基于核偏最小二乘(Kernel partial least squares,KPLS)鲁棒重构误差的故障识别方法.该方法首先建立过程变量与监测变量的KPLS监测模型,然后根据非线性映射空间的协方差矩阵和核空间Gram矩阵之间的关系,反向估计原始空间变量的正常估值.为了增强算法的鲁棒性,采用迭代去噪算法减少异常数据对原始空间正常估值的影响.通过利用原始空间正常估值和真实值来构造故障识别指标,并给出故障识别指标的控制限.基于实际工业数据的高炉数据实验表明所提方法不仅可以监测出正常工况下影响燃料比异常变化的潜在因素,还可识别出异常工况下影响燃料比异常变化的关键因素,具有很好的工程应用前景.
文摘针对选择性催化还原(selective catalytic reduction,SCR)脱硝系统反应过程复杂,在工况变化时存在非线性、大惯性和强干扰性的特点,难以建立准确的出口NO_x排放浓度模型。利用核偏最小二乘法具有解决变量众多且存在严重相关的非线性工业过程建模的优点,首先引入正交信号校正(orthogonal signal correction,OSC)对相空间重构后的样本进行预处理,剔除与建模无关的信息;然后利用组合核偏最小二乘法(combination kernel partial least squares,CKPLS)具有较好的学习能力和泛化能力的特点,提出OSC-CKPLS方法提高模型性能;最后采用滑动窗口更新,并反馈补偿修正模型。对2个标准数据集进行仿真,分别验证CKPLS、OSC和OSC-CKPLS能够提高模型性能;并对SCR脱硝系统现场数据验证了本文方法的有效性。