A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means ...A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means (MPCM) algorithm by using kernel methods. Different from MPCM and fuzzy c-means (FCM) model which are based on Euclidean distance, the proposed model is based on kernel-induced distance. Furthermore, with kernel methods the input data can be mapped implicitly into a high-dimensional feature space where the nonlinear pattern now appears linear. It is unnecessary to do calculation in the high-dimensional feature space because the kernel function can do it. Numerical experiments show that KMPCM outperforms FCM and MPCM.展开更多
Many of the best predictors for complex problems are typically regarded as hard to interpret physically.These include kernel methods,Shtarkov solutions,and random forests.We show that,despite the inability to interpre...Many of the best predictors for complex problems are typically regarded as hard to interpret physically.These include kernel methods,Shtarkov solutions,and random forests.We show that,despite the inability to interpret these three predictors to infinite precision,they can be asymptotically approximated and admit conceptual interpretations in terms of their mathe-matical/statistical properties.The resulting expressions can be in terms of polynomials,basis elements,or other functions that an analyst may regard as interpretable.展开更多
This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredepend...This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.展开更多
Predicting protein functions is an important issue in the post-genomic era. This paper studies several network-based kernels including local linear embedding (LLE) kernel method, diffusion kernel and laplacian kerne...Predicting protein functions is an important issue in the post-genomic era. This paper studies several network-based kernels including local linear embedding (LLE) kernel method, diffusion kernel and laplacian kernel to uncover the relationship between proteins functions and protein-protein interactions (PPI). The author first construct kernels based on PPI networks, then apply support vector machine (SVM) techniques to classify proteins into different functional groups. The 5-fold cross validation is then applied to the selected 359 GO terms to compare the performance of different kernels and guilt-by-association methods including neighbor counting methods and Chi-square methods. Finally, the authors conduct predictions of functions of some unknown genes and verify the preciseness of our prediction in part by the information of other data source.展开更多
The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(...The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(1∕3) formula,(ii)relativistic continuum Hartree-Bogoliubov(RCHB)theory,(iii)Hartree-Fock-Bogoliubov(HFB)model HFB25,(iv)the Weizsacker-Skyrme(WS)model WS*,and(v)HFB25*model.In the last two models,the charge radii were calculated using a five-parameter formula with the nuclear shell corrections and deformations obtained from the WS and HFB25 models,respectively.For each model,the resultant root-mean-square deviation for the 1014 nuclei with proton number Z≥8 can be significantly reduced to 0.009-0.013 fm after considering the modification with the EKRR method.The best among them was the RCHB model,with a root-mean-square deviation of 0.0092 fm.The extrapolation abilities of the KRR and EKRR methods for the neutron-rich region were examined,and it was found that after considering the odd-even effects,the extrapolation power was improved compared with that of the original KRR method.The strong odd-even staggering of nuclear charge radii of Ca and Cu isotopes and the abrupt kinks across the neutron N=126 and 82 shell closures were also calculated and could be reproduced quite well by calculations using the EKRR method.展开更多
Principal Component Analysis(PCA)is one of the most important feature extraction methods,and Kernel Principal Component Analysis(KPCA)is a nonlinear extension of PCA based on kernel methods.In real world,each input da...Principal Component Analysis(PCA)is one of the most important feature extraction methods,and Kernel Principal Component Analysis(KPCA)is a nonlinear extension of PCA based on kernel methods.In real world,each input data may not be fully assigned to one class and it may partially belong to other classes.Based on the theory of fuzzy sets,this paper presents Fuzzy Principal Component Analysis(FPCA)and its nonlinear extension model,i.e.,Kernel-based Fuzzy Principal Component Analysis(KFPCA).The experimental results indicate that the proposed algorithms have good performances.展开更多
In this paper, we extend the state-space kriging(SSK) modeling technique presented in a previous work by the authors in order to consider non-autonomous systems. SSK is a data-driven method that computes predictions a...In this paper, we extend the state-space kriging(SSK) modeling technique presented in a previous work by the authors in order to consider non-autonomous systems. SSK is a data-driven method that computes predictions as linear combinations of past outputs. To model the nonlinear dynamics of the system, we propose the kernel-based state-space kriging(K-SSK), a new version of the SSK where kernel functions are used instead of resorting to considerations about the locality of the data. Also, a Kalman filter can be used to improve the predictions at each time step in the case of noisy measurements. A constrained tracking nonlinear model predictive control(NMPC) scheme using the black-box input-output model obtained by means of the K-SSK prediction method is proposed. Finally, a simulation example and a real experiment are provided in order to assess the performance of the proposed controller.展开更多
To deal with the nonlinear separable problem, the generalized noise clustering (GNC) algorithm is extended to a kernel generalized noise clustering (KGNC) model. Different from the fuzzy c-means (FCM) model and ...To deal with the nonlinear separable problem, the generalized noise clustering (GNC) algorithm is extended to a kernel generalized noise clustering (KGNC) model. Different from the fuzzy c-means (FCM) model and the GNC model which are based on Euclidean distance, the presented model is based on kernel-induced distance by using kernel method. By kernel method the input data are nonlinearly and implicitly mapped into a high-dimensional feature space, where the nonlinear pattern appears linear and the GNC algorithm is performed. It is unnecessary to calculate in high-dimensional feature space because the kernel function can do it just in input space. The effectiveness of the proposed algorithm is verified by experiments on three data sets. It is concluded that the KGNC algorithm has better clustering accuracy than FCM and GNC in clustering data sets containing noisy data.展开更多
Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is...Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is to learn the kernel from the data automatically. A general regularized risk functional (RRF) criterion for kernel matrix learning is proposed. Compared with the RRF criterion, general RRF criterion takes into account the geometric distributions of the embedding data points. It is proven that the distance between different geometric distdbutions can be estimated by their centroid distance in the reproducing kernel Hilbert space. Using this criterion for kernel matrix learning leads to a convex quadratically constrained quadratic programming (QCQP) problem. For several commonly used loss functions, their mathematical formulations are given. Experiment results on a collection of benchmark data sets demonstrate the effectiveness of the proposed method.展开更多
An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-tri...An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-triangulation(LDT) techniques, which were suitable and effective for h-adaptivity analysis on 2-D problems with the regular or irregular distribution of the nodes. The results of multiresolution and h- adaptivity analyses on 2-D linear elastostatics and bending plate problems demonstrate that the improper high-gradient indicator will reduce the convergence property of the h- adaptivity analysis, and that the efficiency of the LDT node refinement strategy is better than SNN, and that the presented h-adaptivity analysis scheme is provided with the validity, stability and good convergence property.展开更多
In practical process industries,a variety of online and offline sensors and measuring instruments have been used for process control and monitoring purposes,which indicates that the measurements coming from different ...In practical process industries,a variety of online and offline sensors and measuring instruments have been used for process control and monitoring purposes,which indicates that the measurements coming from different sources are collected at different sampling rates.To build a complete process monitoring strategy,all these multi-rate measurements should be considered for data-based modeling and monitoring.In this paper,a novel kernel multi-rate probabilistic principal component analysis(K-MPPCA)model is proposed to extract the nonlinear correlations among different sampling rates.In the proposed model,the model parameters are calibrated using the kernel trick and the expectation-maximum(EM)algorithm.Also,the corresponding fault detection methods based on the nonlinear features are developed.Finally,a simulated nonlinear case and an actual pre-decarburization unit in the ammonia synthesis process are tested to demonstrate the efficiency of the proposed method.展开更多
On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is present...On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is presented in this paper. The advantages of the CVRKPM are that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is obtained. The Galerkin weak form is employed to obtain the discretised system equations, and implicit time integration method, which is the Newmark method, is used for time history analysis. And the penalty method is employed to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional elastodynamics are obtained. Three numerical examples of two-dimensional elastodynamics are presented, and the CVRKPM results are compared with the ones of the RKPM and analytical solutions. It is evident that the numerical results of the CVRKPM are in excellent agreement with the analytical solution, and that the CVRKPM has greater precision than the RKPM.展开更多
A new algorithm was developed to correctly identify fault conditions and accurately monitor fault development in a mine hoist. The new method is based on the Wavelet Packet Transform (WPT) and kernel PCA (Kernel Princ...A new algorithm was developed to correctly identify fault conditions and accurately monitor fault development in a mine hoist. The new method is based on the Wavelet Packet Transform (WPT) and kernel PCA (Kernel Principal Compo- nent Analysis, KPCA). For non-linear monitoring systems the key to fault detection is the extracting of main features. The wavelet packet transform is a novel technique of signal processing that possesses excellent characteristics of time-frequency localization. It is suitable for analysing time-varying or transient signals. KPCA maps the original input features into a higher dimension feature space through a non-linear mapping. The principal components are then found in the higher dimen- sion feature space. The KPCA transformation was applied to extracting the main nonlinear features from experimental fault feature data after wavelet packet transformation. The results show that the proposed method affords credible fault detection and identification.展开更多
A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow t...A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow theory of 3D rigid-plastic mechanics. For the treatments of essential boundary conditions and incompressibility constraint, the boundary singular kernel method and the modified penalty method are utilized, respectively. The arc-tangential friction model is employed to treat the contact conditions. The compression of rectangular blocks, a typical 3D upsetting operation, is analyzed for different friction conditions and the numerical results are compared with those obtained using commercial rigid-plastic FEM (finite element method) software Deform^3D. As results show, when handling 3D plastic deformations, the proposed approach eliminates the need of expensive meshing and remeshing procedures which are unavoidable in conventional FEM and can provide results that are in good agreement with finite element predictions.展开更多
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d...The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis.展开更多
An interpolating reproducing kernel particle method for two-dimensional (2D) scatter points is introduced. It elim- inates the dependency of gridding in numerical calculations. The interpolating shape function in th...An interpolating reproducing kernel particle method for two-dimensional (2D) scatter points is introduced. It elim- inates the dependency of gridding in numerical calculations. The interpolating shape function in the interpolating repro- ducing kernel particle method satisfies the property of the Kronecker delta function. This method offers a mathematics basis for recognition technology and simulation analysis, which can be expressed as simultaneous differential equations in science or project problems. Mathematical examples are given to show the validity of the interpolating reproducing kernel particle method.展开更多
In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE metho...In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.展开更多
The application field of the Internet of Things(IoT)involves all aspects,and its application in the fields of industry,agriculture,environment,transportation,logistics,security and other infrastructure has effectively...The application field of the Internet of Things(IoT)involves all aspects,and its application in the fields of industry,agriculture,environment,transportation,logistics,security and other infrastructure has effectively promoted the intelligent development of these aspects.Although the IoT has gradually grown in recent years,there are still many problems that need to be overcome in terms of technology,management,cost,policy,and security.We need to constantly weigh the benefits of trusting IoT products and the risk of leaking private data.To avoid the leakage and loss of various user data,this paper developed a hybrid algorithm of kernel function and random perturbation method based on the algorithm of non-negative matrix factorization,which realizes personalized recommendation and solves the problem of user privacy data protection in the process of personalized recommendation.Compared to non-negative matrix factorization privacy-preserving algorithm,the new algorithm does not need to know the detailed information of the data,only need to know the connection between each data;and the new algorithm can process the data points with negative characteristics.Experiments show that the new algorithm can produce recommendation results with certain accuracy under the premise of preserving users’personal privacy.展开更多
This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)metho...This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)method which deals with this problem is very troublesome.This paper proposes a new method by adaptive multi-step piecewise interpolation reproducing kernel(AMPIRK)method for the first time.This method has three obvious advantages which are as follows.Firstly,the piecewise number is reduced.Secondly,the calculation accuracy is improved.Finally,the waste time caused by too many fragments is avoided.Then four numerical examples show that this new method has a higher precision and it is a more timesaving numerical method than the others.The research in this paper provides a powerful mathematical tool for solving time-fractional option pricing model which will play an important role in financial economics.展开更多
A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate it...A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate its better robustness to the complex and nonlinear variations of real face images, such as illumination, facial expression, scale and pose variations, experiments are carried out on the Olivetti Research Laboratory, Yale and self-built face databases. The results indicate that in contrast to kernel principal component analysis and kernel linear discriminant analysis, the method can achieve lower (7%) error rate using only a very small set of features. Furthermore, a new corrected kernel model is proposed to improve the recognition performance. Experimental results confirm its superiority (1% in terms of recognition rate) to other polynomial kernel models.展开更多
基金Project supported by the 15th Plan for National Defence Preventive Research Project (Grant No.413030201)
文摘A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means (MPCM) algorithm by using kernel methods. Different from MPCM and fuzzy c-means (FCM) model which are based on Euclidean distance, the proposed model is based on kernel-induced distance. Furthermore, with kernel methods the input data can be mapped implicitly into a high-dimensional feature space where the nonlinear pattern now appears linear. It is unnecessary to do calculation in the high-dimensional feature space because the kernel function can do it. Numerical experiments show that KMPCM outperforms FCM and MPCM.
文摘Many of the best predictors for complex problems are typically regarded as hard to interpret physically.These include kernel methods,Shtarkov solutions,and random forests.We show that,despite the inability to interpret these three predictors to infinite precision,they can be asymptotically approximated and admit conceptual interpretations in terms of their mathe-matical/statistical properties.The resulting expressions can be in terms of polynomials,basis elements,or other functions that an analyst may regard as interpretable.
基金supported by a grant from the National Science and Technology Council of the Republic of China(Grant Number:MOST 112-2221-E-006-048-MY2).
文摘This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.
基金This research is supported in part by HKRGC Grant 7017/07P, HKU CRCG Grants, HKU strategic theme grant on computational sciences, HKU Hung Hing Ying Physical Science Research Grant, National Natural Science Foundation of China Grant No. 10971075 and Guangdong Provincial Natural Science Grant No. 9151063101000021. The preliminary version of this paper has been presented in the OSB2009 conference and published in the corresponding conference proceedings[25]. The authors would like to thank the anonymous referees for their helpful comments and suggestions.
文摘Predicting protein functions is an important issue in the post-genomic era. This paper studies several network-based kernels including local linear embedding (LLE) kernel method, diffusion kernel and laplacian kernel to uncover the relationship between proteins functions and protein-protein interactions (PPI). The author first construct kernels based on PPI networks, then apply support vector machine (SVM) techniques to classify proteins into different functional groups. The 5-fold cross validation is then applied to the selected 359 GO terms to compare the performance of different kernels and guilt-by-association methods including neighbor counting methods and Chi-square methods. Finally, the authors conduct predictions of functions of some unknown genes and verify the preciseness of our prediction in part by the information of other data source.
基金This work was supported by the National Natural Science Foundation of China(Nos.11875027,11975096).
文摘The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(1∕3) formula,(ii)relativistic continuum Hartree-Bogoliubov(RCHB)theory,(iii)Hartree-Fock-Bogoliubov(HFB)model HFB25,(iv)the Weizsacker-Skyrme(WS)model WS*,and(v)HFB25*model.In the last two models,the charge radii were calculated using a five-parameter formula with the nuclear shell corrections and deformations obtained from the WS and HFB25 models,respectively.For each model,the resultant root-mean-square deviation for the 1014 nuclei with proton number Z≥8 can be significantly reduced to 0.009-0.013 fm after considering the modification with the EKRR method.The best among them was the RCHB model,with a root-mean-square deviation of 0.0092 fm.The extrapolation abilities of the KRR and EKRR methods for the neutron-rich region were examined,and it was found that after considering the odd-even effects,the extrapolation power was improved compared with that of the original KRR method.The strong odd-even staggering of nuclear charge radii of Ca and Cu isotopes and the abrupt kinks across the neutron N=126 and 82 shell closures were also calculated and could be reproduced quite well by calculations using the EKRR method.
文摘Principal Component Analysis(PCA)is one of the most important feature extraction methods,and Kernel Principal Component Analysis(KPCA)is a nonlinear extension of PCA based on kernel methods.In real world,each input data may not be fully assigned to one class and it may partially belong to other classes.Based on the theory of fuzzy sets,this paper presents Fuzzy Principal Component Analysis(FPCA)and its nonlinear extension model,i.e.,Kernel-based Fuzzy Principal Component Analysis(KFPCA).The experimental results indicate that the proposed algorithms have good performances.
基金supported by the Agencia Estatal de Investigación (AEI)-Spain (PID2019-106212RB-C41/AEI/10.13039/501100011033)Junta de Andalucía and FEDER funds (P20_00546)。
文摘In this paper, we extend the state-space kriging(SSK) modeling technique presented in a previous work by the authors in order to consider non-autonomous systems. SSK is a data-driven method that computes predictions as linear combinations of past outputs. To model the nonlinear dynamics of the system, we propose the kernel-based state-space kriging(K-SSK), a new version of the SSK where kernel functions are used instead of resorting to considerations about the locality of the data. Also, a Kalman filter can be used to improve the predictions at each time step in the case of noisy measurements. A constrained tracking nonlinear model predictive control(NMPC) scheme using the black-box input-output model obtained by means of the K-SSK prediction method is proposed. Finally, a simulation example and a real experiment are provided in order to assess the performance of the proposed controller.
基金The 15th Plan National Defence Preven-tive Research Project (No.413030201)
文摘To deal with the nonlinear separable problem, the generalized noise clustering (GNC) algorithm is extended to a kernel generalized noise clustering (KGNC) model. Different from the fuzzy c-means (FCM) model and the GNC model which are based on Euclidean distance, the presented model is based on kernel-induced distance by using kernel method. By kernel method the input data are nonlinearly and implicitly mapped into a high-dimensional feature space, where the nonlinear pattern appears linear and the GNC algorithm is performed. It is unnecessary to calculate in high-dimensional feature space because the kernel function can do it just in input space. The effectiveness of the proposed algorithm is verified by experiments on three data sets. It is concluded that the KGNC algorithm has better clustering accuracy than FCM and GNC in clustering data sets containing noisy data.
基金supported by the National Natural Science Fundation of China (60736021)the Joint Funds of NSFC-Guangdong Province(U0735003)
文摘Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is to learn the kernel from the data automatically. A general regularized risk functional (RRF) criterion for kernel matrix learning is proposed. Compared with the RRF criterion, general RRF criterion takes into account the geometric distributions of the embedding data points. It is proven that the distance between different geometric distdbutions can be estimated by their centroid distance in the reproducing kernel Hilbert space. Using this criterion for kernel matrix learning leads to a convex quadratically constrained quadratic programming (QCQP) problem. For several commonly used loss functions, their mathematical formulations are given. Experiment results on a collection of benchmark data sets demonstrate the effectiveness of the proposed method.
文摘An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-triangulation(LDT) techniques, which were suitable and effective for h-adaptivity analysis on 2-D problems with the regular or irregular distribution of the nodes. The results of multiresolution and h- adaptivity analyses on 2-D linear elastostatics and bending plate problems demonstrate that the improper high-gradient indicator will reduce the convergence property of the h- adaptivity analysis, and that the efficiency of the LDT node refinement strategy is better than SNN, and that the presented h-adaptivity analysis scheme is provided with the validity, stability and good convergence property.
基金supported by Zhejiang Provincial Natural Science Foundation of China(LY19F030003)Key Research and Development Project of Zhejiang Province(2021C04030)+1 种基金the National Natural Science Foundation of China(62003306)Educational Commission Research Program of Zhejiang Province(Y202044842)。
文摘In practical process industries,a variety of online and offline sensors and measuring instruments have been used for process control and monitoring purposes,which indicates that the measurements coming from different sources are collected at different sampling rates.To build a complete process monitoring strategy,all these multi-rate measurements should be considered for data-based modeling and monitoring.In this paper,a novel kernel multi-rate probabilistic principal component analysis(K-MPPCA)model is proposed to extract the nonlinear correlations among different sampling rates.In the proposed model,the model parameters are calibrated using the kernel trick and the expectation-maximum(EM)algorithm.Also,the corresponding fault detection methods based on the nonlinear features are developed.Finally,a simulated nonlinear case and an actual pre-decarburization unit in the ammonia synthesis process are tested to demonstrate the efficiency of the proposed method.
基金supported by the National Natural Science Foundation of China (Grant No.10871124)the Innovation Program of Shanghai Municipal Education Commission,China (Grant No.09ZZ99)
文摘On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is presented in this paper. The advantages of the CVRKPM are that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is obtained. The Galerkin weak form is employed to obtain the discretised system equations, and implicit time integration method, which is the Newmark method, is used for time history analysis. And the penalty method is employed to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional elastodynamics are obtained. Three numerical examples of two-dimensional elastodynamics are presented, and the CVRKPM results are compared with the ones of the RKPM and analytical solutions. It is evident that the numerical results of the CVRKPM are in excellent agreement with the analytical solution, and that the CVRKPM has greater precision than the RKPM.
基金Projects 50674086 supported by the National Natural Science Foundation of ChinaBS2006002 by the Society Development Science and Technology Planof Jiangsu Province20060290508 by the Doctoral Foundation of Ministry of Education of China
文摘A new algorithm was developed to correctly identify fault conditions and accurately monitor fault development in a mine hoist. The new method is based on the Wavelet Packet Transform (WPT) and kernel PCA (Kernel Principal Compo- nent Analysis, KPCA). For non-linear monitoring systems the key to fault detection is the extracting of main features. The wavelet packet transform is a novel technique of signal processing that possesses excellent characteristics of time-frequency localization. It is suitable for analysing time-varying or transient signals. KPCA maps the original input features into a higher dimension feature space through a non-linear mapping. The principal components are then found in the higher dimen- sion feature space. The KPCA transformation was applied to extracting the main nonlinear features from experimental fault feature data after wavelet packet transformation. The results show that the proposed method affords credible fault detection and identification.
基金This work was supported by the National Natural Science Foundation of China (No. 50275094).
文摘A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow theory of 3D rigid-plastic mechanics. For the treatments of essential boundary conditions and incompressibility constraint, the boundary singular kernel method and the modified penalty method are utilized, respectively. The arc-tangential friction model is employed to treat the contact conditions. The compression of rectangular blocks, a typical 3D upsetting operation, is analyzed for different friction conditions and the numerical results are compared with those obtained using commercial rigid-plastic FEM (finite element method) software Deform^3D. As results show, when handling 3D plastic deformations, the proposed approach eliminates the need of expensive meshing and remeshing procedures which are unavoidable in conventional FEM and can provide results that are in good agreement with finite element predictions.
文摘The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis.
基金supported by the National Natural Science Foundation of China(Grant No.11171208)the Natural Science Foundation of Shanxi Province,China(Grant No.2013011022-6)
文摘An interpolating reproducing kernel particle method for two-dimensional (2D) scatter points is introduced. It elim- inates the dependency of gridding in numerical calculations. The interpolating shape function in the interpolating repro- ducing kernel particle method satisfies the property of the Kronecker delta function. This method offers a mathematics basis for recognition technology and simulation analysis, which can be expressed as simultaneous differential equations in science or project problems. Mathematical examples are given to show the validity of the interpolating reproducing kernel particle method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Special Fund for Basic Scientific Research of Central Colleges of Chang’an University, China (Grant No. CHD2011JC080)
文摘In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.
基金the National Natural Science Foundation of Chinaunder Grant No.61772280by the China Special Fund for Meteorological Research in the Public Interestunder Grant GYHY201306070by the Jiangsu Province Innovation and Entrepreneurship TrainingProgram for College Students under Grant No.201910300122Y.
文摘The application field of the Internet of Things(IoT)involves all aspects,and its application in the fields of industry,agriculture,environment,transportation,logistics,security and other infrastructure has effectively promoted the intelligent development of these aspects.Although the IoT has gradually grown in recent years,there are still many problems that need to be overcome in terms of technology,management,cost,policy,and security.We need to constantly weigh the benefits of trusting IoT products and the risk of leaking private data.To avoid the leakage and loss of various user data,this paper developed a hybrid algorithm of kernel function and random perturbation method based on the algorithm of non-negative matrix factorization,which realizes personalized recommendation and solves the problem of user privacy data protection in the process of personalized recommendation.Compared to non-negative matrix factorization privacy-preserving algorithm,the new algorithm does not need to know the detailed information of the data,only need to know the connection between each data;and the new algorithm can process the data points with negative characteristics.Experiments show that the new algorithm can produce recommendation results with certain accuracy under the premise of preserving users’personal privacy.
基金the National Natural Science Foundation of China(Grant Nos.71961022,11902163,12265020,and 12262024)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant Nos.2019BS01011 and 2022MS01003)+5 种基金2022 Inner Mongolia Autonomous Region Grassland Talents Project-Young Innovative and Entrepreneurial Talents(Mingjing Du)2022 Talent Development Foundation of Inner Mongolia Autonomous Region of China(Ming-Jing Du)the Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region Program(Grant No.NJYT-20-B18)the Key Project of High-quality Economic Development Research Base of Yellow River Basin in 2022(Grant No.21HZD03)2022 Inner Mongolia Autonomous Region International Science and Technology Cooperation High-end Foreign Experts Introduction Project(Ge Kai)MOE(Ministry of Education in China)Humanities and Social Sciences Foundation(Grants No.20YJC860005).
文摘This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)method which deals with this problem is very troublesome.This paper proposes a new method by adaptive multi-step piecewise interpolation reproducing kernel(AMPIRK)method for the first time.This method has three obvious advantages which are as follows.Firstly,the piecewise number is reduced.Secondly,the calculation accuracy is improved.Finally,the waste time caused by too many fragments is avoided.Then four numerical examples show that this new method has a higher precision and it is a more timesaving numerical method than the others.The research in this paper provides a powerful mathematical tool for solving time-fractional option pricing model which will play an important role in financial economics.
文摘A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate its better robustness to the complex and nonlinear variations of real face images, such as illumination, facial expression, scale and pose variations, experiments are carried out on the Olivetti Research Laboratory, Yale and self-built face databases. The results indicate that in contrast to kernel principal component analysis and kernel linear discriminant analysis, the method can achieve lower (7%) error rate using only a very small set of features. Furthermore, a new corrected kernel model is proposed to improve the recognition performance. Experimental results confirm its superiority (1% in terms of recognition rate) to other polynomial kernel models.