Control and detection of antiferromagnetic topological materials are challenging since the total magnetization vanishes.Here we investigate the magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic ins...Control and detection of antiferromagnetic topological materials are challenging since the total magnetization vanishes.Here we investigate the magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulator Mn Bi2Te4.We find that by breaking the combined mirror symmetries with either perpendicular electric field or external magnetic moment,Kerr and Faraday effects occur.Under perpendicular electric field,antiferromagnetic topological insulators(AFMTI)show sharp peaks at the interband transition threshold,whereas trivial insulators show small adjacent positive and negative peaks.Gate voltage and Fermi energy can be tuned to reveal the differences between AFMTI and trivial insulators.We find that AFMTI with large antiferromagnetic order can be proposed as a pure magneto-optical rotator due to sizable Kerr(Faraday)angles and vanishing ellipticity.Under external magnetic moment,AFMTI and trivial insulators are significantly different in the magnitude of Kerr and Faraday angles and ellipticity.For the qualitative behaviors,AFMTI shows distinct features of Kerr and Faraday angles when the spin configurations of the system change.These phenomena provide new possibilities to optically detect and manipulate the layered topological antiferromagnets.展开更多
The full-potential linearized augmented plane wave plus local orbital method is utilized for exploring the electronic,magnetic,and magneto-optical properties of the NiX_(2)(X=Cl,Br,and I)single layer.The first-princip...The full-potential linearized augmented plane wave plus local orbital method is utilized for exploring the electronic,magnetic,and magneto-optical properties of the NiX_(2)(X=Cl,Br,and I)single layer.The first-principles calculation demonstrates that these compounds are ferromagnetic indirect semiconductors,and the energy band gaps of NiX_(2)for X=Cl,Br,and I are 3.888,3.134,and 2.157 eV,respectively.The magnetic moments of Ni atoms in NiX_(2)monolayer are 1.656,1.588,1.449μB,and their magneto-crystalline anisotropy energies are 0.167,0.029,0.090 meV,respectively.Based on the macro-linear response theory,we systematically studied the influences of the external magnetic field and out-of-plane strain on the magneto-optical Kerr effect(MOKE)spectrum of the NiX_(2)single layer.It is found that,when the external magnetic field is perpendicular to the sample plane,the value of the Kerr rotation angle reaches the maximum,and the single-layer NiI_(2)material has a Kerr rotation angle of 1.89°at the photon energy of 1.986 eV.Besides,the Kerr rotation spectrum of NiCl_(2)and NiBr_(2)monolayers redshift as the out-of-plane strain increases,while NiI_(2)monolayer blueshifts.Accurate computation of the MOKE spectrum of NiX_(2)materials provides an opportunity for applications of 2D magnetic material ranging from sensing to data storing.展开更多
Considering the Kerr black hole surrounded by a homogeneous unmagnetized plasma medium, we study the strong gravitational lensing on the equatorial plane of the Kerr black hole. It is found that the presence of the un...Considering the Kerr black hole surrounded by a homogeneous unmagnetized plasma medium, we study the strong gravitational lensing on the equatorial plane of the Kerr black hole. It is found that the presence of the uniform plasma can increase the photon-sphere radius r_{/rm ps}, the coefficients /bar{a} and /bar{b}, the angular position of the relativistic images (/theta_{/infty}), the deflection angle /alpha(/theta) and the angular separation s. However, the relative magnitude r_{/rm m} decreases in the presence of the uniform plasma medium. It is also shown that the impact of the uniform plasma on the effect of strong gravitational lensing becomes smaller as the spin of the Kerr black hole increases in the prograde orbit (a〉0). In particular, for the extreme black hole (a=0.5), the effect of strong gravitational lensing in the homogeneous plasma medium is the same as the case in vacuum for the prograde orbit.展开更多
Kerr effects of two-dimensional (2D) Bismuth iron garnet (BIG)/Ag photonic crystals (PCs) combined magnetic and plasmonic functionalities is investigated with the effective medium theory. An analytical expressio...Kerr effects of two-dimensional (2D) Bismuth iron garnet (BIG)/Ag photonic crystals (PCs) combined magnetic and plasmonic functionalities is investigated with the effective medium theory. An analytical expression of Kerr rotation angles is derived, in which the effects of the surface pasmons polaritons (SPP) on magneto--optical (MO) activities are reflected. The largest enhancement of Kerr rotation up to now is demonstrated, which is improved three orders of magnitude compared with that of BIG film. When λ 〈 750 nm all of the reflection are over 10% for the arbitrary filling ratio fl, in addition, the enhancement of Kerr rotation angles are at least one order of magnitude.展开更多
Optical diode behavior of asymmetric one-dimensional photonic crystal with Kerr defect is numerically investigated using nonlinear transfer matrix method. In the linear case, the intensity and the phase of transmitted...Optical diode behavior of asymmetric one-dimensional photonic crystal with Kerr defect is numerically investigated using nonlinear transfer matrix method. In the linear case, the intensity and the phase of transmitted field are the same for the forward and backward operations. In the nonlinear case, however, the transmitted intensities are much different for the two operations, which display diode characteristic. Physical origin of the anisotropic transmission lies in the different localizations in the defect layer of the two operations.展开更多
The magneto-optical Kerr effect susceptometry technique is proposed to determine the uniaxial magnetic anisotropy (UMA) constant Ku. The magnetic properties of Cu/Fe/SiO2/Si grown by dc magnetron sputtering were inv...The magneto-optical Kerr effect susceptometry technique is proposed to determine the uniaxial magnetic anisotropy (UMA) constant Ku. The magnetic properties of Cu/Fe/SiO2/Si grown by dc magnetron sputtering were investigated. The in-plane uniaxial magnetic anisotropy was probed by the magneto-optical Kerr effect (MOKE). The value of UMA, Ku = 2.5 x 103 J/m3, was simulated from the field dependence of ac susceptibility along the hard axis according to the Stoner-Wohlfarth (S-W) model, which is consistent with Ku = 2.7~ 103 J/m3 calculated from the magnetic hysteresis loops. Our results show that the magneto-optical Kerr effect susceptometry can be employed to determine the magnetic anisotropy constant owing to its high sensitivity.展开更多
We present an analytical model for cross-Kerr nonlinear coefficient in a four-level N-type atomic medium under Doppler broadening.The model is applied to87 Rb atoms to analyze the dependence of the cross-Kerr nonlinea...We present an analytical model for cross-Kerr nonlinear coefficient in a four-level N-type atomic medium under Doppler broadening.The model is applied to87 Rb atoms to analyze the dependence of the cross-Kerr nonlinear coefficient on the external light field and the temperature of atomic vapor.The analysis shows that in the absence of electromagnetically induced transparency(EIT)the cross-Kerr nonlinear coefficient is zero,but it is significantly enhanced when the EIT is established.It means that the cross-Kerr effect can be turned on/off when the external light field is on or off.Simultaneously,the amplitude and the sign of the cross-Kerr nonlinear coefficient are easily changed according to the intensity and frequency of the external light field.The amplitude of the cross-Kerr nonlinear coefficient remarkably decreases when the temperature of atomic medium increases.The analytical model can be convenient to fit experimental observations and applied to photonic devices.展开更多
Basing on the necessary condition for the trapping dielectric particle by the Gaussian beam, the Kerr effect in the tweezers with the nonlinear particle or the nonlinear medium is proposed to concern. The expressions ...Basing on the necessary condition for the trapping dielectric particle by the Gaussian beam, the Kerr effect in the tweezers with the nonlinear particle or the nonlinear medium is proposed to concern. The expressions of the optical forces concerned with the Kerr effect, which affects the refractive index of the medium, are presented. The distribution of the optical forces in the trapping region is simulated and discussed. The results show that the stability of the tweezers depends on the nonlinear coefficient of refractive index, and the optical tweezers could be broken down with a critical value of the nonlinear coefficient of refractive index of the surrounding medium, or with a critical value of the laser intensity, duration of laser pulse, and radius of beam waist. Moreover, these results give us the explanation the stability of the optical tweezers used for the trapped object as biological molecule embedded in the fluid, which is sensitive with Kerr effect.展开更多
With nanovoids buried in Co films, resonant structures were observed in spectra of polar magneto-optical Kerr effect(MOKE), where both a narrow bandwidth and high intensity were acquired. Through changing the thickn...With nanovoids buried in Co films, resonant structures were observed in spectra of polar magneto-optical Kerr effect(MOKE), where both a narrow bandwidth and high intensity were acquired. Through changing the thickness of Co films and the lattice of voids, different optical modes were introduced. For a very shallow array of voids, the resonant MOKE was induced by Ag plasma edge resonance, for deeper ones, hybrid plasma modes, such as void plasmons in the voids, surface lattice plasmons between the voids, and the co-action of them, etc. resulted in resonant MOKE. We found that resonant MOKE resulted from the void plasmons resonance which possesses the narrowest bandwidth for the lowest absorption of voids. The simulated electromagnetic field(EF) distribution consolidated different effects of these three optical modes on resonant MOKE modulation. Such resonant polar MOKE possesses high sensitivity, which might pave the way to on-chip MO devices.展开更多
For L10-FePt films with strong perpendicular anisotropy covered by arrays of hexagonal close-packed polystyrene spheres (PSSs), fine structures are observed in magneto-optical Kerr rotation spectra in the visible sp...For L10-FePt films with strong perpendicular anisotropy covered by arrays of hexagonal close-packed polystyrene spheres (PSSs), fine structures are observed in magneto-optical Kerr rotation spectra in the visible spectral range. The reflection minima are found to be located at the same wavelengths as the Kerr rotation peaks. The Kerr rotation enhancement is attributed to the excitation of both the surface plasmon polariton in the dielectric PSS/metal interface and the guide waves (guide mode) in the PSS array. The two-dimensional PSSs/SiO2/FePt system exhibiting a tunable magneto-optical Kerr effect and a high perpendicular magnetic anisotropy will be helpful for designing and fabricating magneto-optics devices.展开更多
Considering a system in which a single photon and a coherent field propagate through a Kerr medium, when the weak cross-Kerr interaction between the coherent state and the single photon under decoherence is involved, ...Considering a system in which a single photon and a coherent field propagate through a Kerr medium, when the weak cross-Kerr interaction between the coherent state and the single photon under decoherence is involved, this paper derives analytically a macroscopic superposition state by the superoperator method and investigates the influences of decoherence on the coherence properties of the obtained state. It finds that the macroscopic superposition state will experience evolution from a pure superposltion state to a mixed state in a dissipative environment and the Kerr effect makes the field display a periodic revival from decoherence for a short time.展开更多
Silver phenylacetylide oligomer was found to exhibit prominent third-order nonlinear optical property, with susceptibility chi((3)) of 2.4x10(-14) esu (10(-4) mol/L in 1:1 dimethyl sulfoxide/CHCl3 mixed solution) and ...Silver phenylacetylide oligomer was found to exhibit prominent third-order nonlinear optical property, with susceptibility chi((3)) of 2.4x10(-14) esu (10(-4) mol/L in 1:1 dimethyl sulfoxide/CHCl3 mixed solution) and second-order hyperpolarizability gamma of 5.18x10(-32) esu via heterodyned ultrafast optical Kerr effect measurement. It existed mainly as 1:1 complex oligomers and polymers as characterized by mass spectroscopy and elemental analysis etc.展开更多
The magnetization reversal process of Fe/MgO (001) thin film is investigated by combining transverse and longi- tudinal hysteresis loops. Owing to the competition between domain wall pinning energy and weak uniaxial...The magnetization reversal process of Fe/MgO (001) thin film is investigated by combining transverse and longi- tudinal hysteresis loops. Owing to the competition between domain wall pinning energy and weak uniaxial magnetic anisotropy, the typical magnetization reversal process of Fe ultrathin film can take place via either an "l-jump" process near the easy axis, or a "2-jump" process near the hard axis, depending on the applied field orientation. Besides, the hysteresis loop presents strong asymmetry resulting from the variation of the detected light intensity due to the quadratic magneto-optic effect. Furthermore, we modify the detectable light intensity formula and simulate the hysteresis loops of the Kerr signal. The results show that they are in good agreement with the experimental data.展开更多
In this paper, we solve numerically the nonlinear Schrodinger equation for a defocusing Kerr media with initial conditions different to the hyperbolic tangent function. We demonstrate that initial conditions with a si...In this paper, we solve numerically the nonlinear Schrodinger equation for a defocusing Kerr media with initial conditions different to the hyperbolic tangent function. We demonstrate that initial conditions with a similar position dependence than the hyperbolic tangent evolve to a hyperbolic tangent function, therefore can be considered as (1+1)-D spatial solitons. The waveguide induced by these conditions is not single mode; it has the capacity to confine one mode more.展开更多
A single sheet of graphene exhibits the ability to turn polarization of light by several degrees in modest magnetic fields. Here we demonstrate that giant angle rotation in graphene in the terahertz range can be reali...A single sheet of graphene exhibits the ability to turn polarization of light by several degrees in modest magnetic fields. Here we demonstrate that giant angle rotation in graphene in the terahertz range can be realized and further increased by the introduction of surface plasmon and constructive Fabry Perot interference with the supporting substrate. The maximum Kerr rotation angle is up to 15° in a single layer of graphene ribbons at 6 TPIz for the applied magnetic field 4 T. Such a magnification in magneto-optical Kerr effect can be realized in a fairly large incident angle.展开更多
In this article,we review recently achieved Kerr effect progress in novel liquid crystal(LC) material:vertically aligned deformed helix ferroelectric liquid crystal(VADHFLC).With an increasing applied electric fi...In this article,we review recently achieved Kerr effect progress in novel liquid crystal(LC) material:vertically aligned deformed helix ferroelectric liquid crystal(VADHFLC).With an increasing applied electric field,the induced inplane birefringence of LCs shows quadratic nonlinearity.The theoretical calculations and experimental details are illustrated.With an enhanced Kerr constant to 130 nm/V2,this VADHFLC cell can achieve a 2π modulation by a small efficient electric field with a fast response around 100 μs and thus can be employed in both display and photonics devices.展开更多
In this paper, we have proposed the numerical calculations to study the quantum entanglement (QE) of moving two-level atom interacting with a coherent and the thermal field influenced by intrinsic decoherence (ID), Ke...In this paper, we have proposed the numerical calculations to study the quantum entanglement (QE) of moving two-level atom interacting with a coherent and the thermal field influenced by intrinsic decoherence (ID), Kerr medium (non-linear) and the Stark effect. The wave function of the complete system interacting with a coherent and the thermal field is calculated numerically affected by ID, Kerr (non-linear) and Stark effects. It has been seen that the Stark, Kerr, ID and the thermal environment have a significant effect during the time evolution of the quantum system. Quantum Fisher information (QFI) and QE decrease as the value of the ID parameter is increased in the thermal field without the atomic movement. It is seen that QFI and von Neumann entropy (VNE) show an opposite and periodic response in the presence of atomic motion. The non-linear Kerr medium has a more prominent and significant effect on the QE as the value of the Kerr parameter is decreased. At smaller values of the non-linear Kerr parameter, the VNE increases, however, QFI decreases, so QFI and VNE have a monotonic connection with one another. As the value of the Kerr parameter is increased, the effect of non-linear Kerr doesn’t stay critical on both QFI and QE. However, a periodic response of QE is seen because of the atomic movement which becomes modest under natural impacts. Moreover, it has been seen that QFI and QE rot soon at the smaller values of the Stark parameter. However, as the value of the Stark parameter is increased, the QFI and QE show periodic response even when the atomic movement is absent.展开更多
The non-classical properties of light propagating in four-channel Kerr waveguides, confined in an optical cavity, are studied. The solution to the Hamiltonian of field operators is obtained semi-analytically by using ...The non-classical properties of light propagating in four-channel Kerr waveguides, confined in an optical cavity, are studied. The solution to the Hamiltonian of field operators is obtained semi-analytically by using symmetrically ordered phase-space representation. Full quantum analysis of the input coherent fields displays a strong transition of photon property between the super-Poissonian and sub-Poissonian statistics. It is found that the cavity-assisted multichannel system exhibits enhanced squeezing both in single-and compound-mode. This multichannel system may be utilized as an efficient quantumlight generator.展开更多
In close-aperture Z-scan experiments, a small aperture is conventionally located in the far-field thereby enabling the detection of slight changes in the laser beam profile due to the Kerr-lensing effect. In this work...In close-aperture Z-scan experiments, a small aperture is conventionally located in the far-field thereby enabling the detection of slight changes in the laser beam profile due to the Kerr-lensing effect. In this work, by numerically solving the Fresnel-Kirchhoff diffraction integrals, the amount of transmitted power through apertures has been evaluated and a parametric study on the role of the various parameters that can influence this transmitted power has been done. In order to perform a comprehensive analysis, we have used a nonlinear phase shift optimized for nonlocal nonlinear media in our calculations. Our results show that apertures will result in the formation of symmetrical fluctuations on the wings of Z-scan transmittance curves. It is further shown that the appearance of these fluctuations can be ascribed to the natural diffraction of the Gaussian beam as it propagates up to the aperture plane. Our calculations reveal that the nonlocal parameter variations can shift the position of fluctuations along the optical axis, whereas their magnitude depends on the largeness of the induced nonlinear phase shift. It is concluded that since the mentioned fluctuations are produced by the natural diffraction of the Gaussian beam itself, one must take care not to mistakenly interpret them as noise and should not expect to eliminate them from experimental Z-scan transmittance curves by using apertures with different sizes.展开更多
Ultrathin Fe films were epitaxially grown on Si(lll) by using an ultrathin iron silicide film with p(2 × 2) surface reconstruction as a template. The surface structure and magnetic properties were investigate...Ultrathin Fe films were epitaxially grown on Si(lll) by using an ultrathin iron silicide film with p(2 × 2) surface reconstruction as a template. The surface structure and magnetic properties were investigated in situ by low energy electron diffraction (LEED), scanning tunnelling microscopy (STM), and surface magneto-optical effect (SMOKE). Polar SMOKE hysteresis loops demonstrate that the Fe ultrathin films with thickness t 〈 6 ML (monolayers) exhibit perpen-dicular magnetic anisotropy. The characters of M-H loops with the external magnetic field at difference angles and the angular dependence of coercivity suggest that the domain-wall pinning plays a dominant role in the magnetization reversal process.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11904062)the Starting Research Fund from Guangzhou University(Grant No.RQ2020076)Guangzhou Basic Research Program,jointed funded by Guangzhou University(Grant No.202201020186)。
文摘Control and detection of antiferromagnetic topological materials are challenging since the total magnetization vanishes.Here we investigate the magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulator Mn Bi2Te4.We find that by breaking the combined mirror symmetries with either perpendicular electric field or external magnetic moment,Kerr and Faraday effects occur.Under perpendicular electric field,antiferromagnetic topological insulators(AFMTI)show sharp peaks at the interband transition threshold,whereas trivial insulators show small adjacent positive and negative peaks.Gate voltage and Fermi energy can be tuned to reveal the differences between AFMTI and trivial insulators.We find that AFMTI with large antiferromagnetic order can be proposed as a pure magneto-optical rotator due to sizable Kerr(Faraday)angles and vanishing ellipticity.Under external magnetic moment,AFMTI and trivial insulators are significantly different in the magnitude of Kerr and Faraday angles and ellipticity.For the qualitative behaviors,AFMTI shows distinct features of Kerr and Faraday angles when the spin configurations of the system change.These phenomena provide new possibilities to optically detect and manipulate the layered topological antiferromagnets.
文摘The full-potential linearized augmented plane wave plus local orbital method is utilized for exploring the electronic,magnetic,and magneto-optical properties of the NiX_(2)(X=Cl,Br,and I)single layer.The first-principles calculation demonstrates that these compounds are ferromagnetic indirect semiconductors,and the energy band gaps of NiX_(2)for X=Cl,Br,and I are 3.888,3.134,and 2.157 eV,respectively.The magnetic moments of Ni atoms in NiX_(2)monolayer are 1.656,1.588,1.449μB,and their magneto-crystalline anisotropy energies are 0.167,0.029,0.090 meV,respectively.Based on the macro-linear response theory,we systematically studied the influences of the external magnetic field and out-of-plane strain on the magneto-optical Kerr effect(MOKE)spectrum of the NiX_(2)single layer.It is found that,when the external magnetic field is perpendicular to the sample plane,the value of the Kerr rotation angle reaches the maximum,and the single-layer NiI_(2)material has a Kerr rotation angle of 1.89°at the photon energy of 1.986 eV.Besides,the Kerr rotation spectrum of NiCl_(2)and NiBr_(2)monolayers redshift as the out-of-plane strain increases,while NiI_(2)monolayer blueshifts.Accurate computation of the MOKE spectrum of NiX_(2)materials provides an opportunity for applications of 2D magnetic material ranging from sensing to data storing.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11447168 and 11247013the Hunan Provincial Natural Science Foundation under Grant Nos 12JJ4007 and 2015JJ2085
文摘Considering the Kerr black hole surrounded by a homogeneous unmagnetized plasma medium, we study the strong gravitational lensing on the equatorial plane of the Kerr black hole. It is found that the presence of the uniform plasma can increase the photon-sphere radius r_{/rm ps}, the coefficients /bar{a} and /bar{b}, the angular position of the relativistic images (/theta_{/infty}), the deflection angle /alpha(/theta) and the angular separation s. However, the relative magnitude r_{/rm m} decreases in the presence of the uniform plasma medium. It is also shown that the impact of the uniform plasma on the effect of strong gravitational lensing becomes smaller as the spin of the Kerr black hole increases in the prograde orbit (a〉0). In particular, for the extreme black hole (a=0.5), the effect of strong gravitational lensing in the homogeneous plasma medium is the same as the case in vacuum for the prograde orbit.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11104050,10947168,11204056,and 11304068)
文摘Kerr effects of two-dimensional (2D) Bismuth iron garnet (BIG)/Ag photonic crystals (PCs) combined magnetic and plasmonic functionalities is investigated with the effective medium theory. An analytical expression of Kerr rotation angles is derived, in which the effects of the surface pasmons polaritons (SPP) on magneto--optical (MO) activities are reflected. The largest enhancement of Kerr rotation up to now is demonstrated, which is improved three orders of magnitude compared with that of BIG film. When λ 〈 750 nm all of the reflection are over 10% for the arbitrary filling ratio fl, in addition, the enhancement of Kerr rotation angles are at least one order of magnitude.
文摘Optical diode behavior of asymmetric one-dimensional photonic crystal with Kerr defect is numerically investigated using nonlinear transfer matrix method. In the linear case, the intensity and the phase of transmitted field are the same for the forward and backward operations. In the nonlinear case, however, the transmitted intensities are much different for the two operations, which display diode characteristic. Physical origin of the anisotropic transmission lies in the different localizations in the defect layer of the two operations.
基金Project supported by the National Basic Research Program of China(Grant Nos.2009CB929201,2011CB921801,and 2012CB933102)the National Natural Science Foundation of China(Grant Nos.50931006,11034004,51021061,and 11274033)
文摘The magneto-optical Kerr effect susceptometry technique is proposed to determine the uniaxial magnetic anisotropy (UMA) constant Ku. The magnetic properties of Cu/Fe/SiO2/Si grown by dc magnetron sputtering were investigated. The in-plane uniaxial magnetic anisotropy was probed by the magneto-optical Kerr effect (MOKE). The value of UMA, Ku = 2.5 x 103 J/m3, was simulated from the field dependence of ac susceptibility along the hard axis according to the Stoner-Wohlfarth (S-W) model, which is consistent with Ku = 2.7~ 103 J/m3 calculated from the magnetic hysteresis loops. Our results show that the magneto-optical Kerr effect susceptometry can be employed to determine the magnetic anisotropy constant owing to its high sensitivity.
基金supported by Vietnam’s Ministry of Education and Training under Grant No.B2018-TDV-01SP。
文摘We present an analytical model for cross-Kerr nonlinear coefficient in a four-level N-type atomic medium under Doppler broadening.The model is applied to87 Rb atoms to analyze the dependence of the cross-Kerr nonlinear coefficient on the external light field and the temperature of atomic vapor.The analysis shows that in the absence of electromagnetically induced transparency(EIT)the cross-Kerr nonlinear coefficient is zero,but it is significantly enhanced when the EIT is established.It means that the cross-Kerr effect can be turned on/off when the external light field is on or off.Simultaneously,the amplitude and the sign of the cross-Kerr nonlinear coefficient are easily changed according to the intensity and frequency of the external light field.The amplitude of the cross-Kerr nonlinear coefficient remarkably decreases when the temperature of atomic medium increases.The analytical model can be convenient to fit experimental observations and applied to photonic devices.
文摘Basing on the necessary condition for the trapping dielectric particle by the Gaussian beam, the Kerr effect in the tweezers with the nonlinear particle or the nonlinear medium is proposed to concern. The expressions of the optical forces concerned with the Kerr effect, which affects the refractive index of the medium, are presented. The distribution of the optical forces in the trapping region is simulated and discussed. The results show that the stability of the tweezers depends on the nonlinear coefficient of refractive index, and the optical tweezers could be broken down with a critical value of the nonlinear coefficient of refractive index of the surrounding medium, or with a critical value of the laser intensity, duration of laser pulse, and radius of beam waist. Moreover, these results give us the explanation the stability of the optical tweezers used for the trapped object as biological molecule embedded in the fluid, which is sensitive with Kerr effect.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2015AM024)the Doctoral Research Started Funding of Qufu Normal University,China(Grant No.BSQD20130152)
文摘With nanovoids buried in Co films, resonant structures were observed in spectra of polar magneto-optical Kerr effect(MOKE), where both a narrow bandwidth and high intensity were acquired. Through changing the thickness of Co films and the lattice of voids, different optical modes were introduced. For a very shallow array of voids, the resonant MOKE was induced by Ag plasma edge resonance, for deeper ones, hybrid plasma modes, such as void plasmons in the voids, surface lattice plasmons between the voids, and the co-action of them, etc. resulted in resonant MOKE. We found that resonant MOKE resulted from the void plasmons resonance which possesses the narrowest bandwidth for the lowest absorption of voids. The simulated electromagnetic field(EF) distribution consolidated different effects of these three optical modes on resonant MOKE modulation. Such resonant polar MOKE possesses high sensitivity, which might pave the way to on-chip MO devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.51171129)the Shanghai Committee of Science and Technology,China(Grant No.11JC1412700)
文摘For L10-FePt films with strong perpendicular anisotropy covered by arrays of hexagonal close-packed polystyrene spheres (PSSs), fine structures are observed in magneto-optical Kerr rotation spectra in the visible spectral range. The reflection minima are found to be located at the same wavelengths as the Kerr rotation peaks. The Kerr rotation enhancement is attributed to the excitation of both the surface plasmon polariton in the dielectric PSS/metal interface and the guide waves (guide mode) in the PSS array. The two-dimensional PSSs/SiO2/FePt system exhibiting a tunable magneto-optical Kerr effect and a high perpendicular magnetic anisotropy will be helpful for designing and fabricating magneto-optics devices.
基金Project supported by the National Natural Science Foundation of China (Grant No 60478049)the Natural Science Foundation of Hubei Province, China (Grant No 2006 ABB015)
文摘Considering a system in which a single photon and a coherent field propagate through a Kerr medium, when the weak cross-Kerr interaction between the coherent state and the single photon under decoherence is involved, this paper derives analytically a macroscopic superposition state by the superoperator method and investigates the influences of decoherence on the coherence properties of the obtained state. It finds that the macroscopic superposition state will experience evolution from a pure superposltion state to a mixed state in a dissipative environment and the Kerr effect makes the field display a periodic revival from decoherence for a short time.
文摘Silver phenylacetylide oligomer was found to exhibit prominent third-order nonlinear optical property, with susceptibility chi((3)) of 2.4x10(-14) esu (10(-4) mol/L in 1:1 dimethyl sulfoxide/CHCl3 mixed solution) and second-order hyperpolarizability gamma of 5.18x10(-32) esu via heterodyned ultrafast optical Kerr effect measurement. It existed mainly as 1:1 complex oligomers and polymers as characterized by mass spectroscopy and elemental analysis etc.
基金supported by the National Natural Science Foundation of China(Grant Nos.11274033,11474015,and 61227902)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20131102130005)the Beijing Key Discipline Foundation of Condensed Matter Physics
文摘The magnetization reversal process of Fe/MgO (001) thin film is investigated by combining transverse and longi- tudinal hysteresis loops. Owing to the competition between domain wall pinning energy and weak uniaxial magnetic anisotropy, the typical magnetization reversal process of Fe ultrathin film can take place via either an "l-jump" process near the easy axis, or a "2-jump" process near the hard axis, depending on the applied field orientation. Besides, the hysteresis loop presents strong asymmetry resulting from the variation of the detected light intensity due to the quadratic magneto-optic effect. Furthermore, we modify the detectable light intensity formula and simulate the hysteresis loops of the Kerr signal. The results show that they are in good agreement with the experimental data.
文摘In this paper, we solve numerically the nonlinear Schrodinger equation for a defocusing Kerr media with initial conditions different to the hyperbolic tangent function. We demonstrate that initial conditions with a similar position dependence than the hyperbolic tangent evolve to a hyperbolic tangent function, therefore can be considered as (1+1)-D spatial solitons. The waveguide induced by these conditions is not single mode; it has the capacity to confine one mode more.
基金Supported by the National Natural Science Foundation of China under Grant No 11474254
文摘A single sheet of graphene exhibits the ability to turn polarization of light by several degrees in modest magnetic fields. Here we demonstrate that giant angle rotation in graphene in the terahertz range can be realized and further increased by the introduction of surface plasmon and constructive Fabry Perot interference with the supporting substrate. The maximum Kerr rotation angle is up to 15° in a single layer of graphene ribbons at 6 TPIz for the applied magnetic field 4 T. Such a magnification in magneto-optical Kerr effect can be realized in a fairly large incident angle.
基金The funding for the State Key Laboratory on Advanced Displays and Optoelectronics Technologies
文摘In this article,we review recently achieved Kerr effect progress in novel liquid crystal(LC) material:vertically aligned deformed helix ferroelectric liquid crystal(VADHFLC).With an increasing applied electric field,the induced inplane birefringence of LCs shows quadratic nonlinearity.The theoretical calculations and experimental details are illustrated.With an enhanced Kerr constant to 130 nm/V2,this VADHFLC cell can achieve a 2π modulation by a small efficient electric field with a fast response around 100 μs and thus can be employed in both display and photonics devices.
文摘In this paper, we have proposed the numerical calculations to study the quantum entanglement (QE) of moving two-level atom interacting with a coherent and the thermal field influenced by intrinsic decoherence (ID), Kerr medium (non-linear) and the Stark effect. The wave function of the complete system interacting with a coherent and the thermal field is calculated numerically affected by ID, Kerr (non-linear) and Stark effects. It has been seen that the Stark, Kerr, ID and the thermal environment have a significant effect during the time evolution of the quantum system. Quantum Fisher information (QFI) and QE decrease as the value of the ID parameter is increased in the thermal field without the atomic movement. It is seen that QFI and von Neumann entropy (VNE) show an opposite and periodic response in the presence of atomic motion. The non-linear Kerr medium has a more prominent and significant effect on the QE as the value of the Kerr parameter is decreased. At smaller values of the non-linear Kerr parameter, the VNE increases, however, QFI decreases, so QFI and VNE have a monotonic connection with one another. As the value of the Kerr parameter is increased, the effect of non-linear Kerr doesn’t stay critical on both QFI and QE. However, a periodic response of QE is seen because of the atomic movement which becomes modest under natural impacts. Moreover, it has been seen that QFI and QE rot soon at the smaller values of the Stark parameter. However, as the value of the Stark parameter is increased, the QFI and QE show periodic response even when the atomic movement is absent.
文摘The non-classical properties of light propagating in four-channel Kerr waveguides, confined in an optical cavity, are studied. The solution to the Hamiltonian of field operators is obtained semi-analytically by using symmetrically ordered phase-space representation. Full quantum analysis of the input coherent fields displays a strong transition of photon property between the super-Poissonian and sub-Poissonian statistics. It is found that the cavity-assisted multichannel system exhibits enhanced squeezing both in single-and compound-mode. This multichannel system may be utilized as an efficient quantumlight generator.
文摘In close-aperture Z-scan experiments, a small aperture is conventionally located in the far-field thereby enabling the detection of slight changes in the laser beam profile due to the Kerr-lensing effect. In this work, by numerically solving the Fresnel-Kirchhoff diffraction integrals, the amount of transmitted power through apertures has been evaluated and a parametric study on the role of the various parameters that can influence this transmitted power has been done. In order to perform a comprehensive analysis, we have used a nonlinear phase shift optimized for nonlocal nonlinear media in our calculations. Our results show that apertures will result in the formation of symmetrical fluctuations on the wings of Z-scan transmittance curves. It is further shown that the appearance of these fluctuations can be ascribed to the natural diffraction of the Gaussian beam as it propagates up to the aperture plane. Our calculations reveal that the nonlocal parameter variations can shift the position of fluctuations along the optical axis, whereas their magnitude depends on the largeness of the induced nonlinear phase shift. It is concluded that since the mentioned fluctuations are produced by the natural diffraction of the Gaussian beam itself, one must take care not to mistakenly interpret them as noise and should not expect to eliminate them from experimental Z-scan transmittance curves by using apertures with different sizes.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 2001CB610605) and the National Natural Science Foundation of China (Grant No 10474132).
文摘Ultrathin Fe films were epitaxially grown on Si(lll) by using an ultrathin iron silicide film with p(2 × 2) surface reconstruction as a template. The surface structure and magnetic properties were investigated in situ by low energy electron diffraction (LEED), scanning tunnelling microscopy (STM), and surface magneto-optical effect (SMOKE). Polar SMOKE hysteresis loops demonstrate that the Fe ultrathin films with thickness t 〈 6 ML (monolayers) exhibit perpen-dicular magnetic anisotropy. The characters of M-H loops with the external magnetic field at difference angles and the angular dependence of coercivity suggest that the domain-wall pinning plays a dominant role in the magnetization reversal process.