Parity–time(PT) and quasi-anti-parity–time(quasi-APT) symmetric optical gyroscopes have been proposed recently which enhance Sagnac frequency splitting. However, the operation of gyroscopes at the exceptional point(...Parity–time(PT) and quasi-anti-parity–time(quasi-APT) symmetric optical gyroscopes have been proposed recently which enhance Sagnac frequency splitting. However, the operation of gyroscopes at the exceptional point(EP) is challenging due to strict fabrication requirements and experimental uncertainties. We propose a new quasi-APT-symmetric micro-optical gyroscope which can be operated at the EP by easily shifting the Kerr nonlinearity. A single resonator is used as the core sensitive component of the quasi-APT-symmetric optical gyroscope to reduce the size, overcome the strict structural requirements and detect small rotation rates. Moreover, the proposed scheme also has an easy readout method for the frequency splitting. As a result, the device achieves a frequency splitting 10~5 times higher than that of a classical resonant optical gyroscope with the Earth's rotation. This proposal paves the way for a new and valuable method for the engineering of micro-optical gyroscopes.展开更多
China) Enhanced Kerr nonlinearity in a left-handed atomic system consisting of three levels driven by a bichromatic field is presented in this paper. Based on bichromatic field coherence, the real parts of the permit...China) Enhanced Kerr nonlinearity in a left-handed atomic system consisting of three levels driven by a bichromatic field is presented in this paper. Based on bichromatic field coherence, the real parts of the permittivity and permeability can obtain negative values simultaneously in the same detuning frequency region. By adjusting the frequency difference and the Rabi frequencies of the bichromatic field, the multi-band left-handed behavior of the presented atomic metamaterial is exhibited. Meanwhile, the enhanced Kerr nonlinearity can be realized in this multi-band left-handed three-level atomic system. It is shown that the third-order susceptibility possesses focusing or defocusing properties in the same frequency band.展开更多
The giant enhancement of Kerr nonlinearity in a four-level tripod type system is investigated theoretically. By tuning the value of the Rabi frequency of the coherent control field, owing to the double dark resonances...The giant enhancement of Kerr nonlinearity in a four-level tripod type system is investigated theoretically. By tuning the value of the Rabi frequency of the coherent control field, owing to the double dark resonances, the giantenhanced Kerr nonlinearity can be achieved within the right transparency window. The influence of Doppler broadening is also discussed.展开更多
A scheme for generating the giant enhancement of the Kerr nonlinearity in a four-level system with the quantum coherences from the decays and the incoherent pumping is proposed. Compared with that generated in a gener...A scheme for generating the giant enhancement of the Kerr nonlinearity in a four-level system with the quantum coherences from the decays and the incoherent pumping is proposed. Compared with that generated in a general four- level system, the Kerr nonlinearity can be enhanced by several orders of magnitude with vanishing linear absorption. By using the numerical results, we show that the remarkable enhancement should be attributed to the interaction of the quantum coherences from the decays and the incoherent pumping.展开更多
In this paper, a new model is proposed for manipulating the Kerr nonlinearity of right-hand circular probe light in a monolayer of graphene nanostructure. By using the density matrix equations and quantum optical appr...In this paper, a new model is proposed for manipulating the Kerr nonlinearity of right-hand circular probe light in a monolayer of graphene nanostructure. By using the density matrix equations and quantum optical approach, the third-order susceptibility of probe light is explored numerically. It is realized that the enhanced Kerr nonlinearity with zero linear absorption can be provided by selecting the appropriate quantities of controllable parameters, such as Rabi frequency and elliptical parameter of elliptical polarized coupling field. Our results may be useful applications in future all-optical system devices in nanostructures.展开更多
We present an analytical model for cross-Kerr nonlinear coefficient in a four-level N-type atomic medium under Doppler broadening.The model is applied to87 Rb atoms to analyze the dependence of the cross-Kerr nonlinea...We present an analytical model for cross-Kerr nonlinear coefficient in a four-level N-type atomic medium under Doppler broadening.The model is applied to87 Rb atoms to analyze the dependence of the cross-Kerr nonlinear coefficient on the external light field and the temperature of atomic vapor.The analysis shows that in the absence of electromagnetically induced transparency(EIT)the cross-Kerr nonlinear coefficient is zero,but it is significantly enhanced when the EIT is established.It means that the cross-Kerr effect can be turned on/off when the external light field is on or off.Simultaneously,the amplitude and the sign of the cross-Kerr nonlinear coefficient are easily changed according to the intensity and frequency of the external light field.The amplitude of the cross-Kerr nonlinear coefficient remarkably decreases when the temperature of atomic medium increases.The analytical model can be convenient to fit experimental observations and applied to photonic devices.展开更多
Nonreciprocal microwave devices,in which the transmission of waves is non-symmetric between two ports,are indispensable for the manipulation of information processing and communication.In this work,we show the nonreci...Nonreciprocal microwave devices,in which the transmission of waves is non-symmetric between two ports,are indispensable for the manipulation of information processing and communication.In this work,we show the nonreciprocal microwave transmission in a cavity magnonic system under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect.In contrast to the schemes based on the standard phase modulation or magnon Kerr nonlinearity,we find that the joint mechanism enables the nonreciprocal transmission even at low power and makes us obtain a high nonreciprocal isolation ratio.Moreover,when two microwave modes are coupled to the magnon mode via a different coupling strength,the presented strong nonreciprocal response occurs,and it makes the nonreciprocal transmission manipulating by the magnetic field within a large adjustable range possible,which overcomes narrow operating bandwidths.This study may provide promising opportunities to realize nonreciprocal structures for wave transmission.展开更多
A quasi-two-dimensional layer of MoS2 was placed on top of a silicon optical waveguide to form a MoS2–silicon hybrid structure. Chirped pulse self-phase modulation measurements were carried out to determine the optic...A quasi-two-dimensional layer of MoS2 was placed on top of a silicon optical waveguide to form a MoS2–silicon hybrid structure. Chirped pulse self-phase modulation measurements were carried out to determine the optica Kerr nonlinearity of the structure. The observed increase in the spectral broadening of the optical pulses in the MoS2–silicon waveguide compared with the silicon waveguides indicated that the third-order nonlinear effect in MoS2 is about 2 orders of magnitude larger than that in silicon. The measurements show that MoS2 has an effective optical Kerr coefficient of about 1.1 × 10-16m2∕W. This work reveals the potential application of MoS2 to enhance the nonlinearity of hybrid silicon optical devices.展开更多
We theoretically investigate the control of surface plasmon polariton(SPP) generated at the interface of dielectric and graphene medium under Kerr nonlinearity. The controlled Kerr nonlinear signal of probe light be...We theoretically investigate the control of surface plasmon polariton(SPP) generated at the interface of dielectric and graphene medium under Kerr nonlinearity. The controlled Kerr nonlinear signal of probe light beam in a dielectric medium is used to generate SPPs at the interface of dielectric and graphene medium. The positive, negative absorption, and dispersion properties of SPPs are modified and controlled by the control and Kerr fields. A large amplification(negative absorption) is noted for SPPs under the Kerr nonlinearity. The normal/anomalous slope of dispersion and propagation length of SPPs is modified and controlled with Kerr nonlinearity. This leads to significant variation in slow and fast SPP propagation. The controlled slow and fast SPP propagation may predict significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster, and sensing technology.展开更多
Non-Hermitian systems can exhibit unconventional spectral singularities called exceptional points(EPs).Various EP sensors have been fabricated in recent years,showing strong spectral responses to external signals.Here...Non-Hermitian systems can exhibit unconventional spectral singularities called exceptional points(EPs).Various EP sensors have been fabricated in recent years,showing strong spectral responses to external signals.Here we propose how to achieve a nonlinear anti-parity-time(PT)gyroscope by spinning an optical resonator.We show that,in the absence of any nonlinearity,the sensitivity or optical mode splitting of the linear device can be magnified up to 3 orders compared to that of the conventional device without EPs.Remarkably,the PT symmetry can be broken when including the Kerr nonlinearity of the materials and,as a result,the detection threshold can be significantly lowered,i.e.,much weaker rotations which are well beyond the ability of a linear gyroscope can now be detected with the nonlinear device.Our work shows the powerful ability of PT gyroscopes in practice to achieve ultrasensitive rotation measurement.展开更多
Based on the transfer matrix method, the recursion of an electromagnetic wave propagating in an asymmetric Kerr nonlinear medium is analytically formulated, from which the rectification effect is clearly presented. Th...Based on the transfer matrix method, the recursion of an electromagnetic wave propagating in an asymmetric Kerr nonlinear medium is analytically formulated, from which the rectification effect is clearly presented. The effects on the rectification regioh of the linear part and nonlinear coefficient of permittivity are both studied, and the energy densities before and after rectification are discussed. We use a rectifying factor to describe the intensity of the rectification effect. The result shows that every transmission peak is divided into two parts when the symmetry is broken, and nonlinear asymmetry has a more significant effect on the rectification effect than the linear asymmetry. The rectification intensity and area will be enlarged when the asymmetry factor is increased in a certain range.展开更多
We investigate the enhanced Kerr nonlinearities in four-level atomic vapors driven by a coupling,probe andmicrowave fields.Under the optical one-photon and two-photon resonant conditions,the linear and nonlinear respo...We investigate the enhanced Kerr nonlinearities in four-level atomic vapors driven by a coupling,probe andmicrowave fields.Under the optical one-photon and two-photon resonant conditions,the linear and nonlinear responsesof the weak probe field can be modified by the cross talk among optical and microwave transitions.The enhanced Kerrnonlinearity can form bright optical solitons of the probe field.展开更多
In a Kerr nonlinear blackbody, bare photons with opposite wave vectors and helieities are bound into pairs and unpaired photons are transformed into a different kind of quasiparticle, the nonpolariton. The present pap...In a Kerr nonlinear blackbody, bare photons with opposite wave vectors and helieities are bound into pairs and unpaired photons are transformed into a different kind of quasiparticle, the nonpolariton. The present paper investigates the influence of a single frequency electromagnetic wave on the energy spectrum of the nonpolariton system. We find that the wave can lead to an energy shift of nonpolaritons. Moreover, we calculate the first-order energy shift on certain conditions.展开更多
Owing to the enormously enhanced oscillating wave,a minute variation of the incident light intensity will give rise to a change in the dielectric constant of the Kerr nonlinear medium and lead to a bistable reflection...Owing to the enormously enhanced oscillating wave,a minute variation of the incident light intensity will give rise to a change in the dielectric constant of the Kerr nonlinear medium and lead to a bistable reflection with an ultra-low threshold intensity,which is closely related to the angle of incidence and the thickness of the Kerr nonlinear medium.The criterion for the existence of optical bistability is derived.Our bistability scheme is simple and not limited to the TM-polarization.展开更多
We find that in a Kerr nonlinear optical resonator, the photon system possesses a new kind of quasiparticle, the nonpolariton. The existence of nonpolaritons should be testified by observing the energy density depende...We find that in a Kerr nonlinear optical resonator, the photon system possesses a new kind of quasiparticle, the nonpolariton. The existence of nonpolaritons should be testified by observing the energy density dependence of the velocity and squeezing of nonpolaritons. As we have investigated, the transition energy density of a Kerr nonlinear optical resonator is larger than that of a normal state.展开更多
In order to study the collision of the Kerr solitons and the collision of the the nonlinear Kerr solitons,numerical simulation is employed and it is found that the collision of solutions is different.The collision of ...In order to study the collision of the Kerr solitons and the collision of the the nonlinear Kerr solitons,numerical simulation is employed and it is found that the collision of solutions is different.The collision of Kerr solution is periodically elastic while the collision of the the nonlinear Kerr solution is strongly inelastic.Periodic collisions of the Kerr solitons can be changed by changing the relative amplitude while the collisions of nonlinear the Kerr solitons can be adjusted by selecting the appropriate relative phase.展开更多
We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a clas...We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a class of discrete breathers that aggregate to one boundary,here named as skin discrete breathers(SDBs).The nonlinear spectrum of these SDBs shows a hierarchical power-law scaling near the EP.Specifically,the response of nonlinear energy to the perturbation is given by E_(m)∝Γ~(α_(m)),whereα_(m)=3^(m-1)is the power with m=1,...,L labeling the nonlinear energy bands.This is in sharp contrast to the L-th root of a linear perturbation in general.These SDBs decay in a double-exponential manner,unlike the edge states or skin modes in linear systems,which decay exponentially.Furthermore,these SDBs can survive over the full range of nonlinearity strength and are continuously connected to the self-trapped states in the limit of large nonlinearity.They are also stable,as confirmed by a defined nonlinear fidelity of an adiabatic evolution from the stability analysis.As nonreciprocal nonlinear models may be experimentally realized in various platforms,such as the classical platform of optical waveguides,where Kerr nonlinearity is naturally present,and the quantum platform of optical lattices with Bose-Einstein condensates,our analytical results may inspire further exploration of the interplay between nonlinearity and non-Hermiticity,particularly on high-order EPs,and benchmark the relevant simulations.展开更多
The entanglement dynamics of two stretching vibrations in theoretically typical local- and normal-mode molecules and realistic molecules H2 O and SO2 in an algebraic model is studied in terms of the reduced-density li...The entanglement dynamics of two stretching vibrations in theoretically typical local- and normal-mode molecules and realistic molecules H2 O and SO2 in an algebraic model is studied in terms of the reduced-density linear entropy with initial entangled states taken to be two-mode squeezed vacuum states. It is shown that the behaviour of the entropy in theoretically typical molecules appears to be more regular than that in realistic ones, and that the entropy becomes irregular as the amplitude of two-mode squeezed vacuum states increases. For initial states with a small amplitude, it is demonstrated that the periodicity and the “classical” beat phenomenon of the entropy occur with the beat in theoretically typical molecules being more regular than that in realistic molecules H2O and SO2.展开更多
In this paper,we investigate nonlinear the perturbed nonlinear Schrdinger's equation (NLSE) with Kerr law nonlinearity given in [Z.Y.Zhang,et al.,Appl.Math.Comput.216 (2010) 3064] and obtain exact traveling soluti...In this paper,we investigate nonlinear the perturbed nonlinear Schrdinger's equation (NLSE) with Kerr law nonlinearity given in [Z.Y.Zhang,et al.,Appl.Math.Comput.216 (2010) 3064] and obtain exact traveling solutions by using infinite series method (ISM),Cosine-function method (CFM).We show that the solutions by using ISM and CFM are equal.Finally,we obtain abundant exact traveling wave solutions of NLSE by using Jacobi elliptic function expansion method (JEFEM).展开更多
We investigate the existence and stability of surface defect gap solitons at an interface between a defect in a two-dimensional optical lattice and a uniform saturable Kerr nonlinear medium. The surface defect embedde...We investigate the existence and stability of surface defect gap solitons at an interface between a defect in a two-dimensional optical lattice and a uniform saturable Kerr nonlinear medium. The surface defect embedded in the two-dimensional optical lattice gives rise to some unique properties. It is interestingly found that for the negative defect, stable surface defect gap solitons can exist both in the semi-infinite gap and in the first gap. The deeper the negative defect, the narrower the stable region in the semi-infinite gap will be. For a positive defect, the surface defect gap solitons exist only in the semi-infinite gap and the stable region localizes in a low power region.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62273115,62173105)the Fundamental Research Funds for the Central Universities (Grant No.3072022FSC0401)。
文摘Parity–time(PT) and quasi-anti-parity–time(quasi-APT) symmetric optical gyroscopes have been proposed recently which enhance Sagnac frequency splitting. However, the operation of gyroscopes at the exceptional point(EP) is challenging due to strict fabrication requirements and experimental uncertainties. We propose a new quasi-APT-symmetric micro-optical gyroscope which can be operated at the EP by easily shifting the Kerr nonlinearity. A single resonator is used as the core sensitive component of the quasi-APT-symmetric optical gyroscope to reduce the size, overcome the strict structural requirements and detect small rotation rates. Moreover, the proposed scheme also has an easy readout method for the frequency splitting. As a result, the device achieves a frequency splitting 10~5 times higher than that of a classical resonant optical gyroscope with the Earth's rotation. This proposal paves the way for a new and valuable method for the engineering of micro-optical gyroscopes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50836002 and 51176041)the National Basic Research Program of China(Grant No.2013CB328702)
文摘China) Enhanced Kerr nonlinearity in a left-handed atomic system consisting of three levels driven by a bichromatic field is presented in this paper. Based on bichromatic field coherence, the real parts of the permittivity and permeability can obtain negative values simultaneously in the same detuning frequency region. By adjusting the frequency difference and the Rabi frequencies of the bichromatic field, the multi-band left-handed behavior of the presented atomic metamaterial is exhibited. Meanwhile, the enhanced Kerr nonlinearity can be realized in this multi-band left-handed three-level atomic system. It is shown that the third-order susceptibility possesses focusing or defocusing properties in the same frequency band.
基金Project supported by the National Natural Science Foundation of China (Grant No 60478002) and the Key Basic Research Foundation of Shanghai (Grant Nos 04JC14036 and 05DJ14003).
文摘The giant enhancement of Kerr nonlinearity in a four-level tripod type system is investigated theoretically. By tuning the value of the Rabi frequency of the coherent control field, owing to the double dark resonances, the giantenhanced Kerr nonlinearity can be achieved within the right transparency window. The influence of Doppler broadening is also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10904015,61008063,11004030,and 11074036)
文摘A scheme for generating the giant enhancement of the Kerr nonlinearity in a four-level system with the quantum coherences from the decays and the incoherent pumping is proposed. Compared with that generated in a general four- level system, the Kerr nonlinearity can be enhanced by several orders of magnitude with vanishing linear absorption. By using the numerical results, we show that the remarkable enhancement should be attributed to the interaction of the quantum coherences from the decays and the incoherent pumping.
文摘In this paper, a new model is proposed for manipulating the Kerr nonlinearity of right-hand circular probe light in a monolayer of graphene nanostructure. By using the density matrix equations and quantum optical approach, the third-order susceptibility of probe light is explored numerically. It is realized that the enhanced Kerr nonlinearity with zero linear absorption can be provided by selecting the appropriate quantities of controllable parameters, such as Rabi frequency and elliptical parameter of elliptical polarized coupling field. Our results may be useful applications in future all-optical system devices in nanostructures.
基金supported by Vietnam’s Ministry of Education and Training under Grant No.B2018-TDV-01SP。
文摘We present an analytical model for cross-Kerr nonlinear coefficient in a four-level N-type atomic medium under Doppler broadening.The model is applied to87 Rb atoms to analyze the dependence of the cross-Kerr nonlinear coefficient on the external light field and the temperature of atomic vapor.The analysis shows that in the absence of electromagnetically induced transparency(EIT)the cross-Kerr nonlinear coefficient is zero,but it is significantly enhanced when the EIT is established.It means that the cross-Kerr effect can be turned on/off when the external light field is on or off.Simultaneously,the amplitude and the sign of the cross-Kerr nonlinear coefficient are easily changed according to the intensity and frequency of the external light field.The amplitude of the cross-Kerr nonlinear coefficient remarkably decreases when the temperature of atomic medium increases.The analytical model can be convenient to fit experimental observations and applied to photonic devices.
基金the National Natural Science Foundation of China(Grant Nos.12105092 and 12022507)Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institution of Hubei Province(No.T2020014).
文摘Nonreciprocal microwave devices,in which the transmission of waves is non-symmetric between two ports,are indispensable for the manipulation of information processing and communication.In this work,we show the nonreciprocal microwave transmission in a cavity magnonic system under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect.In contrast to the schemes based on the standard phase modulation or magnon Kerr nonlinearity,we find that the joint mechanism enables the nonreciprocal transmission even at low power and makes us obtain a high nonreciprocal isolation ratio.Moreover,when two microwave modes are coupled to the magnon mode via a different coupling strength,the presented strong nonreciprocal response occurs,and it makes the nonreciprocal transmission manipulating by the magnetic field within a large adjustable range possible,which overcomes narrow operating bandwidths.This study may provide promising opportunities to realize nonreciprocal structures for wave transmission.
基金funded by Hong Kong Research Grants Council research project nos. GRF416913, N_CUHK405/12, Ao E/P-02/12, CUHK1/CRF/12G
文摘A quasi-two-dimensional layer of MoS2 was placed on top of a silicon optical waveguide to form a MoS2–silicon hybrid structure. Chirped pulse self-phase modulation measurements were carried out to determine the optica Kerr nonlinearity of the structure. The observed increase in the spectral broadening of the optical pulses in the MoS2–silicon waveguide compared with the silicon waveguides indicated that the third-order nonlinear effect in MoS2 is about 2 orders of magnitude larger than that in silicon. The measurements show that MoS2 has an effective optical Kerr coefficient of about 1.1 × 10-16m2∕W. This work reveals the potential application of MoS2 to enhance the nonlinearity of hybrid silicon optical devices.
文摘We theoretically investigate the control of surface plasmon polariton(SPP) generated at the interface of dielectric and graphene medium under Kerr nonlinearity. The controlled Kerr nonlinear signal of probe light beam in a dielectric medium is used to generate SPPs at the interface of dielectric and graphene medium. The positive, negative absorption, and dispersion properties of SPPs are modified and controlled by the control and Kerr fields. A large amplification(negative absorption) is noted for SPPs under the Kerr nonlinearity. The normal/anomalous slope of dispersion and propagation length of SPPs is modified and controlled with Kerr nonlinearity. This leads to significant variation in slow and fast SPP propagation. The controlled slow and fast SPP propagation may predict significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster, and sensing technology.
基金the National Natural Science Foundation of China(Grant Nos.11935006,11774086,and 12064010)Science and Technology Innovation Program of Hunan Province,China(Grant No.2020RC4047)+1 种基金Natural Science Foundation of Hunan Province of China(Grant No.2021JJ20036)Natural Science Foundation of Jiangxi Province of China(Grant No.20192ACB21002)。
文摘Non-Hermitian systems can exhibit unconventional spectral singularities called exceptional points(EPs).Various EP sensors have been fabricated in recent years,showing strong spectral responses to external signals.Here we propose how to achieve a nonlinear anti-parity-time(PT)gyroscope by spinning an optical resonator.We show that,in the absence of any nonlinearity,the sensitivity or optical mode splitting of the linear device can be magnified up to 3 orders compared to that of the conventional device without EPs.Remarkably,the PT symmetry can be broken when including the Kerr nonlinearity of the materials and,as a result,the detection threshold can be significantly lowered,i.e.,much weaker rotations which are well beyond the ability of a linear gyroscope can now be detected with the nonlinear device.Our work shows the powerful ability of PT gyroscopes in practice to achieve ultrasensitive rotation measurement.
基金supported by the National Natural Science Foundation of China(Grant No.51032002)the National High Technology Research and Development Program of China(Grant No.2011AA050526)
文摘Based on the transfer matrix method, the recursion of an electromagnetic wave propagating in an asymmetric Kerr nonlinear medium is analytically formulated, from which the rectification effect is clearly presented. The effects on the rectification regioh of the linear part and nonlinear coefficient of permittivity are both studied, and the energy densities before and after rectification are discussed. We use a rectifying factor to describe the intensity of the rectification effect. The result shows that every transmission peak is divided into two parts when the symmetry is broken, and nonlinear asymmetry has a more significant effect on the rectification effect than the linear asymmetry. The rectification intensity and area will be enlarged when the asymmetry factor is increased in a certain range.
基金the Knowledge Innovation Project (KIP) of the Chinese Academy of Sciences under Grant No.KGCX3-SYW-405the National Fundamental Research Program of China under Grant Nos.2005CB724507 and 2006CB921202
文摘We investigate the enhanced Kerr nonlinearities in four-level atomic vapors driven by a coupling,probe andmicrowave fields.Under the optical one-photon and two-photon resonant conditions,the linear and nonlinear responsesof the weak probe field can be modified by the cross talk among optical and microwave transitions.The enhanced Kerrnonlinearity can form bright optical solitons of the probe field.
基金Supported by National Natural Science Foundation of China under Grant Nos.10174024 and 10474025
文摘In a Kerr nonlinear blackbody, bare photons with opposite wave vectors and helieities are bound into pairs and unpaired photons are transformed into a different kind of quasiparticle, the nonpolariton. The present paper investigates the influence of a single frequency electromagnetic wave on the energy spectrum of the nonpolariton system. We find that the wave can lead to an energy shift of nonpolaritons. Moreover, we calculate the first-order energy shift on certain conditions.
基金Projected supported by the Open Fund by State Key Laboratory of Advanced Optical Communication Systems and Networks(Grant No.2017GZKF18)the National Natural Science Foundation of China(Grant Nos.12064017,61765008,11764020,11864017,11804133,and 51567011)+3 种基金the Jiangxi Provincial Natural Science Foundation(Grant No.20181BAB206034)the Fundamental Research Funds for the Central Universities of China(Grant No.2017B14914),the Postdoctoral Science Foundation of China(Grant No.2016M601586)the Science and Technology Project of Changzhou(Grant No.CJ20180048)Scientific Research Fund of Jiangxi Provincial Education Department(Grant Nos.GJJ150313,GJJ160273,and GJJ170184).
文摘Owing to the enormously enhanced oscillating wave,a minute variation of the incident light intensity will give rise to a change in the dielectric constant of the Kerr nonlinear medium and lead to a bistable reflection with an ultra-low threshold intensity,which is closely related to the angle of incidence and the thickness of the Kerr nonlinear medium.The criterion for the existence of optical bistability is derived.Our bistability scheme is simple and not limited to the TM-polarization.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 19847004 and 10474025
文摘We find that in a Kerr nonlinear optical resonator, the photon system possesses a new kind of quasiparticle, the nonpolariton. The existence of nonpolaritons should be testified by observing the energy density dependence of the velocity and squeezing of nonpolaritons. As we have investigated, the transition energy density of a Kerr nonlinear optical resonator is larger than that of a normal state.
基金Fund grant of Taiyuan Institute Technology(No.2010LQ01)
文摘In order to study the collision of the Kerr solitons and the collision of the the nonlinear Kerr solitons,numerical simulation is employed and it is found that the collision of solutions is different.The collision of Kerr solution is periodically elastic while the collision of the the nonlinear Kerr solution is strongly inelastic.Periodic collisions of the Kerr solitons can be changed by changing the relative amplitude while the collisions of nonlinear the Kerr solitons can be adjusted by selecting the appropriate relative phase.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1405304)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2019B030330001)the Guangdong Provincial Key Laboratory(Grant No.2020B1212060066)。
文摘We study the nonlinear perturbation of a high-order exceptional point(EP)of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity.Notably,we find a class of discrete breathers that aggregate to one boundary,here named as skin discrete breathers(SDBs).The nonlinear spectrum of these SDBs shows a hierarchical power-law scaling near the EP.Specifically,the response of nonlinear energy to the perturbation is given by E_(m)∝Γ~(α_(m)),whereα_(m)=3^(m-1)is the power with m=1,...,L labeling the nonlinear energy bands.This is in sharp contrast to the L-th root of a linear perturbation in general.These SDBs decay in a double-exponential manner,unlike the edge states or skin modes in linear systems,which decay exponentially.Furthermore,these SDBs can survive over the full range of nonlinearity strength and are continuously connected to the self-trapped states in the limit of large nonlinearity.They are also stable,as confirmed by a defined nonlinear fidelity of an adiabatic evolution from the stability analysis.As nonreciprocal nonlinear models may be experimentally realized in various platforms,such as the classical platform of optical waveguides,where Kerr nonlinearity is naturally present,and the quantum platform of optical lattices with Bose-Einstein condensates,our analytical results may inspire further exploration of the interplay between nonlinearity and non-Hermiticity,particularly on high-order EPs,and benchmark the relevant simulations.
基金Supported by the National Natural Science Foundation of China Grant Nos 10675050 and 10475082.
文摘The entanglement dynamics of two stretching vibrations in theoretically typical local- and normal-mode molecules and realistic molecules H2 O and SO2 in an algebraic model is studied in terms of the reduced-density linear entropy with initial entangled states taken to be two-mode squeezed vacuum states. It is shown that the behaviour of the entropy in theoretically typical molecules appears to be more regular than that in realistic ones, and that the entropy becomes irregular as the amplitude of two-mode squeezed vacuum states increases. For initial states with a small amplitude, it is demonstrated that the periodicity and the “classical” beat phenomenon of the entropy occur with the beat in theoretically typical molecules being more regular than that in realistic molecules H2O and SO2.
基金Supported by the Research Foundation of Education Bureau of Hunan Province under Grant No.11C0628Foundation of Hunan Institute of Science and Technology under Grant No.2011Y49
文摘In this paper,we investigate nonlinear the perturbed nonlinear Schrdinger's equation (NLSE) with Kerr law nonlinearity given in [Z.Y.Zhang,et al.,Appl.Math.Comput.216 (2010) 3064] and obtain exact traveling solutions by using infinite series method (ISM),Cosine-function method (CFM).We show that the solutions by using ISM and CFM are equal.Finally,we obtain abundant exact traveling wave solutions of NLSE by using Jacobi elliptic function expansion method (JEFEM).
基金Project supported by the National Natural Science Foundation of China (Grant No. 11174147)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2009366)
文摘We investigate the existence and stability of surface defect gap solitons at an interface between a defect in a two-dimensional optical lattice and a uniform saturable Kerr nonlinear medium. The surface defect embedded in the two-dimensional optical lattice gives rise to some unique properties. It is interestingly found that for the negative defect, stable surface defect gap solitons can exist both in the semi-infinite gap and in the first gap. The deeper the negative defect, the narrower the stable region in the semi-infinite gap will be. For a positive defect, the surface defect gap solitons exist only in the semi-infinite gap and the stable region localizes in a low power region.