AIM:To investigate changes in choroidal thickness and vascularity in keratoconus patients treated with corneal crosslinking.METHODS:This study evaluated 28 eyes of 22 patients with keratoconus who underwent corneal cr...AIM:To investigate changes in choroidal thickness and vascularity in keratoconus patients treated with corneal crosslinking.METHODS:This study evaluated 28 eyes of 22 patients with keratoconus who underwent corneal crosslinking.The choroidal thicknesses were evaluated on enhanced depth imaging optical coherence tomography at the preoperative and postoperative 3d,1,and 3mo.Choroidal thickness in the four cardinal quadrants and the fovea were evaluated.The choroidal vascularity index was also calculated.RESULTS:There was no significant difference in central choroidal thickness between the preoperative and postoperative 3d,1mo(P>0.05).There was a significant increase in the 3mo(P=0.034)and a significant decrease in the horizontal choroidal vascularity index on the postoperative 3d(P=0.014),there was no statistically significant change in vertical axes and other visits in horizontal sections(P>0.05).CONCLUSION:This study sheds light on choroidal changes in postoperative corneal crosslinking for keratoconus.While it suggests the procedure’s relative safety for submacular choroid,more extensive research is necessary to confirm these findings and their clinical significance.展开更多
●AIM:To explore the clinical efficacy and safety of stromal lenticule addition keratoplasty(SLAK)with corneal crosslinking(CXL)on patients with corneal ectasia secondary to femtosecond laser-assisted in situ keratomi...●AIM:To explore the clinical efficacy and safety of stromal lenticule addition keratoplasty(SLAK)with corneal crosslinking(CXL)on patients with corneal ectasia secondary to femtosecond laser-assisted in situ keratomileusis(FS-LASIK).●METHODS:A series of 5 patients undertaking SLAK with CXL for the treatment of corneal ectasia secondary to FS-LASIK were followed for 4-9mo.The lenticules were collected from patients undertaking small incision lenticule extraction(SMILE)for the correction of myopia.Adding a stromal lenticule was aimed at improving the corneal thickness for the safe application of crosslinking and compensating for the thin cornea to improve its mechanical strength.●RESULTS:All surgeries were conducted successfully with no significant complications.Their best corrected visual acuity(BCVA)ranged from 0.05 to 0.8-2 before surgery.The pre-operational total corneal thickness ranged from 345-404μm and maximum keratometry(Kmax)ranged from 50.8 to 86.3.After the combination surgery,both the corneal keratometry(range 55.9 to 92.8)and total corneal thickness(range 413-482μm)significantly increased.Four out of 5 patients had improvement of corneal biomechanical parameters(reflected by stiffness parameter A1 in Corvis ST).However,3 patients showed decreased BCVA after surgery due to the development of irregular astigmatism and transient haze.Despite the onset of corneal edema right after SLAK,the corneal topography and thickness generally stabilized after 3mo.●CONCLUSION:SLAK with CXL is a potentially beneficial and safe therapy for advanced corneal ectasia.Future work needs to address the poor predictability of corneal refractometry and compare the outcomes of different surgical modes.展开更多
Carcinoma-associated fibroblasts(CAFs)are the main cellular components of the tumor microenvironment and promote cancer progression by modifying the extracellular matrix(ECM).The tumor-associated ECM is characterized ...Carcinoma-associated fibroblasts(CAFs)are the main cellular components of the tumor microenvironment and promote cancer progression by modifying the extracellular matrix(ECM).The tumor-associated ECM is characterized by collagen crosslinking catalyzed by lysyl oxidase(LOX).Small extracellular vesicles(sEVs)mediate cell-cell communication.However,the interactions between sEVs and the ECM remain unclear.Here,we demonstrated that sEVs released from oral squamous cell carcinoma(OSCC)-derived CAFs induce collagen crosslinking,thereby promoting epithelial-mesenchymal transition(EMT).CAF sEVs preferably bound to the ECM rather than being taken up by fibroblasts and induced collagen crosslinking,and a LOX inhibitor or blocking antibody suppressed this effect.Active LOX(αLOX),but not the LOX precursor,was enriched in CAF sEVs and interacted with periostin,fibronectin,and bone morphogenetic protein-1 on the surface of sEVs.CAF sEV-associated integrinα2β1 mediated the binding of CAF sEVs to collagen I,and blocking integrinα2β1 inhibited collagen crosslinking by interfering with CAF sEV binding to collagen I.CAF sEV-induced collagen crosslinking promoted the EMT of OSCC through FAK/paxillin/YAP pathway.Taken together,these findings reveal a novel role of CAF sEVs in tumor ECM remodeling,suggesting a critical mechanism for CAF-induced EMT of cancer cells.展开更多
Three-dimensional printing technologies exhibit tremendous potential in the advancing fields of tissue engineering and regenerative medicine due to the precise spatial control over depositing the biomaterial.Despite t...Three-dimensional printing technologies exhibit tremendous potential in the advancing fields of tissue engineering and regenerative medicine due to the precise spatial control over depositing the biomaterial.Despite their widespread utilization and numerous advantages,the development of suitable novel biomaterials for extrusion-based 3D printing of scaffolds that support cell attachment,proliferation,and vascularization remains a challenge.Multi-material composite hydrogels present incredible potential in this field.Thus,in this work,a multi-material composite hydrogel with a promising formulation of chitosan/gelatin functionalized with egg white was developed,which provides good printability and shape fidelity.In addition,a series of comparative analyses of different crosslinking agents and processes based on tripolyphosphate(TPP),genipin(GP),and glutaraldehyde(GTA)were investigated and compared to select the ideal crosslinking strategy to enhance the physicochemical and biological properties of the fabricated scaffolds.All of the results indicate that the composite hydrogel and the resulting scaffolds utilizing TPP crosslinking have great potential in tissue engineering,especially for supporting neo-vessel growth into the scaffold and promoting angiogenesis within engineered tissues.展开更多
The crosslinking mechanism of glyoxal and asparagine was analyzed,and the relationship between the mechanism and practical performances of soy protein-based adhesives was also discussed.It is shown that when pH=1 and ...The crosslinking mechanism of glyoxal and asparagine was analyzed,and the relationship between the mechanism and practical performances of soy protein-based adhesives was also discussed.It is shown that when pH=1 and 3,glyoxal reacted with asparagine in the form of major cyclic ether compounds.When pH=5,glyoxal reacted with asparagine in two structural forms of sodium glycollate and cyclic ether compounds.However,amidogens of asparagine were easy to develop protonation under acid conditions.Supplemented by the instability of cyclic ether compounds,the reaction activity and reaction degree between glyoxal and asparagine were relatively small.Under alkaline conditions,glyoxal mainly reacted with asparagine in the form of sodium glycollate.With the increase of pH,the polycondensation was more sufficient and the produced polycondensation products were more stable.The reaction mechanism between glyoxal and asparagine had strong correspondence to the practical performances of the adhesives.Glyoxal solution could develop crosslinking reactions with soy protein under both acid and alkaline conditions.Bonding strength and water resistance of the prepared soy protein-based adhesives were increased significantly.When pH>7,glyoxal had relatively high reaction activity and reaction intensity with soy protein,and the prepared adhesives had high crosslinking density and cohesion strength,showing relatively high bonding strength,water resistance and thermal stability.展开更多
LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)material,as the promising cathode candidate for next-generation highenergy lithium-ion batteries,has gained considerable attention for extremely high theoretical capacity and low...LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)material,as the promising cathode candidate for next-generation highenergy lithium-ion batteries,has gained considerable attention for extremely high theoretical capacity and low cost.Nevertheless,the intrinsic drawbacks of NCM811 such as unstable structure and inevitable interface side reaction result in severe capacity decay and thermal runaway.Herein,a novel polyimide(denoted as PI-Om DT)constructed with the highly polar and micro-branched crosslinking network is reported as a binder material for NCM811 cathode.The micro-branched crosslinking network is achieved by using 1,3,5-Tris(4-aminophenoxy)benzene(TAPOB)as a crosslinker via condensation reaction,which endows excellent mechanical properties and large free volume.Meanwhile,the massive polar carboxyl(-COOH)groups provide strong adhesion sites to active NCM811 particles.These functions of PIOm DT binder collaboratively benefit to forming the mechanically robust and homogeneous coating layer with rapid Li+diffusion on the surface of NCM811,significantly stabilizing the cathode structure,suppressing the detrimental interface side reaction and guaranteeing the shorter ion-diffusion and electron-transfer paths,consequently enhancing electrochemical performance.As compared to the NCM811 with PVDF binder,the NCM811 using PI-Om DT binder delivers a superior high-rate capacity(121.07 vs.145.38 m Ah g^(-1))at 5 C rate and maintains a higher capacity retention(80.38%vs.91.6%)after100 cycles at 2.5–4.3 V.Particularly,at the high-voltage conditions up to 4.5 and 4.7 V,the NCM811 with PI-Om DT binder still maintains the remarkable capacity retention of 88.86%and 72.5%after 100 cycles,respectively,paving the way for addressing the high-voltage operating stability of the NCM811 cathode.Moreover,the full-charged NCM811 cathode with PI-Om DT binder exhibits a significantly enhanced thermal stability,improving the safety performance of batteries.This work opens a new avenue for developing high-energy NCM811 based lithium-ion batteries with long cycle-life and superior safety performance using a novel and effective binder.展开更多
Despite their importance as components for flexible electronics,most stretchable hydrogels suffer from incomplete recovery after deformation,are prone to failure upon long-term repeated stretching,and cannot be exploi...Despite their importance as components for flexible electronics,most stretchable hydrogels suffer from incomplete recovery after deformation,are prone to failure upon long-term repeated stretching,and cannot be exploited at subzero temperatures because of the freezing of their constituent water.Conse-quently,strategies for circumventing these drawbacks are highly sought after.This study describes the synthesis of a doubly(chemically and physically)crosslinked hydrogel from gelatin and methacrylic acid and demonstrates the suitability of this material for the fabrication of high-performance stretchable and environment-resistant supercapacitors and strain sensors.The performance of this supercapacitor(areal capacitance=1,210.2 mF/cm^(2) at a current density of 1 mA/cm^(2),maximum energy density=158.8μW.h/cm^(-1),maximum power density=659.5μW/cm^(2))was superior to that of most of integrated super-capacitors reported to date and was hardly affected by stretchable,low temperatures,bending,ice-cold water and strong acid/alkali solutions or long-term storage.Additionally,a strain sensor based on the above hydrogel was capable of accurately capturing human body motions when affixed to skin and recognising mouse movement(even in humid environments)after implantation into mouse legs.Our work may pave the way to high-performance stretchable and environment-resistant wearable electronics.展开更多
In order to improve the substrate diffusion properties and stability of an immobilized enzyme alginate microgels modified with TiO2 nanoparticles were employed as the enzyme immobilizing support.Ionotropic gelation wa...In order to improve the substrate diffusion properties and stability of an immobilized enzyme alginate microgels modified with TiO2 nanoparticles were employed as the enzyme immobilizing support.Ionotropic gelation was applied for the preparation of hybrid gels while Ca2+ Ce3+ Ni2+Cu2+and Fe3+were employed as the crosslinkers.Papain was selected as the model enzyme. UV-Vis spectroscopy was employed to investigate the activity of papain to evaluate kinetics and stability.Analysis results show that the highest affinity the lowest Michaelis-Menten constant Km =11.0 mg/mL and the highest stability are obtained when using Cu2+as the crosslinker.The effect of the mass ratio of TiO2 to papain on the stability and leakage of papain is also investigated and the results show that 10∶1 TiO2∶papain is optimal because the proper use of TiO2 can reduce enzyme leakage and ensure enzyme stability.Preparing Cu/alginate/TiO2 hybrid gels via ionotropic gelation can provide a satisfactory diffusion capability and enzyme stability.展开更多
Ultra High Molecular Weight Polyethylene(UHMWPE)has been widely used as a bearing material for artificial joint replacement over forty years.It is usually crosslinked by gamma rays irradiation before its implantation ...Ultra High Molecular Weight Polyethylene(UHMWPE)has been widely used as a bearing material for artificial joint replacement over forty years.It is usually crosslinked by gamma rays irradiation before its implantation into human body.In this study,UHMWPE and UHMWPE/nano-hydroxyapatite(n-HA)composite were prepared by vacuum hot-pressing method.The prepared materials were irradiated by gamma rays in vacuum and molten heat treated in vacuum just after irradiation.The effect of filling n-HA with gamma irradiation on tribological properties of UHMWPE was investigated by using friction and wear experimental machine(model MM-200)under deionized water lubrication.Micro-morphology of worn surface was observed by metallographic microscope.Contact angle and hardness of the materials were also measured.The results show that contact angle and hardness are changed by filling n-HA and gamma irradiation.Friction coefficient and wear rate under deionized water lubrication are reduced by filling n-HA.While friction coefficient is increased and wear rate is reduced significantly by gamma irradiation.The worn surface of unfilled material is mainly characterized as adhesive wear and abrasive wear,and that of n-HA filled material is mainly characterized as abrasive wear.After gamma irradiation,the degrees of adhesive and abrasive wear for unfilled material and abrasive wear of n-HA filled material are significantly reduced.Unfilled and filled materials after irradiation are mainly shown as slight fatigue wear.The results indicate that UHMWPE and UHMWPE/n-HA irradiated at the dose of 150 kGy can be used as bearing materials in artificial joints for its excellent wear resistance compared to original UHMWPE.展开更多
Objective: Procyanidins (PC) are widely available natural polyphenols. The present study is designed to investigate if PC can inhibit angiogenesis in lung adenocarcinoma xenografts through crosslinking vascular ext...Objective: Procyanidins (PC) are widely available natural polyphenols. The present study is designed to investigate if PC can inhibit angiogenesis in lung adenocarcinoma xenografts through crosslinking vascular extracellular matrix (ECM) and preventing proteolysis by matrix metalloproteinases (MMPs). Methods: Using the in vitro MMP-2 proteolysis and in vivo subcutaneous implantation models, we investigated if PC crosslinking inhibits MMP-mediated proteolysis. Using a cultured cell detachment assay, an in vitro angiogenesis assay, and a cell proliferation assay, we investigated if PC inhibits MMP-2-mediated endothelial cell detachment, angiogenesis, and cell proliferation, respectively. Using tumor xenografts, we evaluated if PC can inhibit growth of lung adenocarcinoma. Results: PC crosslink vascular ECM proteins, protecting them against proteolysis by MMPs in vitro and in vivo, protecting cultured human umbilical vein endothelial cells from detachment by MMP-2, and inhibiting in vitro angiogenesis. However, PC (0.75-100 μg/mL) did not inhibit vascular and tumor cells proliferation. PC injections (30 mg PC/kg bodyweight) in situ had anticancer effects on xenografts of lung adenocarcinoma, most likely by inhibiting angiogenesis during ECM proteolysis by MMPs. Conclusion: The results suggest that PC may be important MMP inhibitors that can be used as therapeutic anticancer agents.展开更多
AIM: To evaluate the efficacy and safety of corneal collagen crosslinking (01) to prevent the progression of post-laser in situ keratomileusis (LASIK) corneal ectasia. METHODS: In a prospective, nonrandomized, single-...AIM: To evaluate the efficacy and safety of corneal collagen crosslinking (01) to prevent the progression of post-laser in situ keratomileusis (LASIK) corneal ectasia. METHODS: In a prospective, nonrandomized, single-centre study, CXL was performed in 20 eyes of 11 patients who had LASIK for myopic astigmatism and subsequently developed keratectasia. The procedure included instillation of 0.1% riboflavin-20% dextrane solution 30 minutes before UVA irradiation and every 5 minutes for an additional 30 minutes during irradiation. The eyes were evaluated preoperatively and at 1-, 3-, 6-, and 12-month intervals. The complete ophthalmologic examination comprised uncorrected visual acuity, best spectacle-corrected visual acuity, endothelial cell count, ultrasound pachymetry, corneal topography, and in vivo confocal microscopy. RESULTS: CXL appeared to stabilise or partially reverse the progression of post-LASIK corneal ectasia without apparent complication in our cohort. UCVA and BCVA improvements were statistically significant (P<0.05)beyond 12 months after surgery (improvement of 0.07 and 0.13 logMAR at 1 year, respectively). Mean baseline flattest meridian keratometry and mean steepest meridian keratometry reduction (improvement of 2.00 and 1.50 diopters (D), respectively) were statistically significant (P < 0.05) at 12 months postoperatively. At 1 year after 01, mean endothelial cell count did not deteriorate. Mean thinnest cornea pachymetry increased significantly. CONCLUSION: The results of the study showed a long-term stability of post-LASIK corneal ectasia after crosslinking without relevant side effects. It seems to be a safe and promising procedure to stop the progression of post-LASIK keratectasia, thereby avoiding or delaying keratoplasty.展开更多
By incorporating copper sulfate (CuSO4) particles into acrylonitrile butadiene rubber (NBR) followed by heat pressing, a novel vulcanization method is developed in rubber through the formation of coordination cros...By incorporating copper sulfate (CuSO4) particles into acrylonitrile butadiene rubber (NBR) followed by heat pressing, a novel vulcanization method is developed in rubber through the formation of coordination crosslinking. This method totally differs from traditional covalent or non-covalent vulcanization approaches of rubber. No other vulcanizing agent or additional additive is involved in this process. By analyzing the results of DMA, XPS and FT-IR, it is found that the crosslinking of CuSO4 particles filled NBR was induced by in situ coordination between nitrogen atoms of nitrile groups (-CN) and copper ions (Cu^2+) from CuSO4. SEM and EDX results revealed the generation of a core (CuSO4 solid particle)- shell (adherent NBR) structure, which leads to a result that the crosslinked rubber has excellent mechanical properties. Moreover, poly(vinyl chloride) (PVC) and liquid acrylonitrile-butadiene rubber (LNBR) were used as mobilizer to improve the coordination crosslinking of CuSO4/NBR. The addition of PVC or LNBR could lead to higher crosslink density and better mechanical properties of coordination vulcanization. In addition, crystal water in CuSO4 played a positive role to coordination crosslinking of rubber because it decreased the metal point of CuSO4 and promoted the metal ionization.展开更多
In this paper, radiation-induced crosslinking mechanism and characterization of the crosslinking density of F-40 and F-4 by X-ray photoelectron spectroscopy (XPS) have been studied. The dose of gelation of F-40 obta...In this paper, radiation-induced crosslinking mechanism and characterization of the crosslinking density of F-40 and F-4 by X-ray photoelectron spectroscopy (XPS) have been studied. The dose of gelation of F-40 obtained from XPS is 4.1×10;Gy. It is found that crosslinking density is the largest in the range of certain dose for F-40 and F-4.展开更多
A novel type of crosslinkable poly(aryl ether sulfone)(PAES) bearing an allyl pendant(PES-OAllyl) was synthesized by a grafting reaction of hydrophenyl-containing PAES(PES-OH) and allyl bromide. PES-OH was pre...A novel type of crosslinkable poly(aryl ether sulfone)(PAES) bearing an allyl pendant(PES-OAllyl) was synthesized by a grafting reaction of hydrophenyl-containing PAES(PES-OH) and allyl bromide. PES-OH was prepared by a demethylation reaction of a methoxyphenylated PAES(PES-OCH3) in the presence of pyridine/hydrochlo- ride. The PES-OCH3 was synthesized by an aromatic nucleophilic substitution of bis(4-chlorophenyl)sulfone and (p-methoxy)phenylhydroquinone. Both DSC and solubility investigation were used to study the crosslinking behavior of PES-OAllyl. After heat treatment, the glass transition temperature(Tg) value of PES-OAllyl sharply increased from 165 ℃ to 227 ℃. Meanwhile, PES-OAllyl changed from a soluble polymer to an insoluble thermoset. In addition, TGA(thermogravimetric analysis) result suggests that the thermal stability of the crosslinked product was improved. All the data prove that the crosslinked PES-OAllyl could be a potential solvent-resistance high-performance material.展开更多
Riboflavin-UVA photodynamic inactivation is a potential treatment altemative in therapy resistant infectious keratitis. The purpose of our study was to determine the impact of riboflavin-UVA photodynamic inactivation ...Riboflavin-UVA photodynamic inactivation is a potential treatment altemative in therapy resistant infectious keratitis. The purpose of our study was to determine the impact of riboflavin-UVA photodynamic inactivation on viability, apop- tosis and activation of human keratocytes in vitro. Primary human keratocytes were isolated from human corneal buttons and cultured in DMEM/Ham's F12 medium supplemented with 10% fetal calf serum. Keratocytes underwent UVA light illumination (375 nm) for 4.10 minutes (2 J/cm2) during exposure to different concentrations of riboflavin. Twenty-four hours after treatment, cell viability was evaluated photometrically, whereas apoptosis, CD34 and alpha-smooth muscle actin (α-SMA) expression were assessed using flow cytometry. We did not detect significant changes in cell viability, apoptosis, CD34 and α-SMA expression in groups only treated with riboflavin or UVA light. In the group treated with riboflavin-UVA-photodynamic inactivation, viability of keratocytes decreased significantly at 0.1% riboflavin (P〈0.01) while the percentage of CD34 (P〈0.01 for both 0.05% and 0.1% riboflavin) and alpha-SMA positive keratocytes (P〈0.01 and P〈0.05 for 0.05% and 0.1% riboflavin, respectively) increased significantly compared to the controls. There was no significant change in the percentage of apoptotic keratocytes compared to controls at any of the used ribo- flavin concentrations (P=0.09 and P=0.13). We concluded that riboflavin-UVA-photodynamic-inactivation decreases viability of myofibroblastic transformation and multipotent haematopoietic stem cell transformation; however, it does not have an impact on apoptosis of human keratocytes in vitro.展开更多
A polyacrylate/polyurethane (P(A)/P(U)) composite coating has been prepared by crosslinking an acetoacetylated polyacrylate with a vinylic group terminated polyurethane at room temperature. A model Michael reaction be...A polyacrylate/polyurethane (P(A)/P(U)) composite coating has been prepared by crosslinking an acetoacetylated polyacrylate with a vinylic group terminated polyurethane at room temperature. A model Michael reaction between ethyl acetoacetate (EAA) and methyl acrylate (MA) was designed to study the crosslinking mechanism. It was found that the two active hydrogen atoms in acetoacetyl group can both add to vinylic groups and the yield of mono-and bis-adducts are much affected by the molar ratio of acetoacetyl to vinylic groups. Higher crosslinking degree and better properties could be obtained with decreasing the molar ratio of the two active groups from 1/1 to 0.6/1 in the composite coatings.展开更多
A yellow crosslinking polymeric dye was prepared by grafting the flavone moiety containing azo chromophore onto polyvinylamine backbone.The λ max of this polymeric dye in water is 382 nm.The polymeric dye is fixed to...A yellow crosslinking polymeric dye was prepared by grafting the flavone moiety containing azo chromophore onto polyvinylamine backbone.The λ max of this polymeric dye in water is 382 nm.The polymeric dye is fixed to silk and cotton with a crosslinking agent,2-chloro-4,6-di(aminobenzene-4'-β-sulphatoethylsulphone)-1,3,5-s-triazine,which acts as a bridge between the fiber and dye molecules.The fixation of this polymeric dye reaches 99% and the dyed samples exhibit excellent rubbing and washing fastness.展开更多
The effects of three organic colorants on photo-initiated crosslinking and photo-oxidation degradation of polyethylene (PE) samples irradiated by microwave excited (MWE) UV lamp in the melt and the related mechanism h...The effects of three organic colorants on photo-initiated crosslinking and photo-oxidation degradation of polyethylene (PE) samples irradiated by microwave excited (MWE) UV lamp in the melt and the related mechanism have been studied by gel content and thermal extension rate determinations,X-ray photoelectron spectroscopy (XPS),mechanical property tests,UV spectroscopy,and light microscope.The data from the gel content and thermal extension rate determinations of photo-crosslinked polyethylene (XLPE) sample...展开更多
A series of acrylic-based superabsorbent resins were synthesized by inverse suspension polymerization, using potassium persulfate as the initiator, N, N'-methylene bisacrylamide (BIS) and divinylbenzene (DVB) as ...A series of acrylic-based superabsorbent resins were synthesized by inverse suspension polymerization, using potassium persulfate as the initiator, N, N'-methylene bisacrylamide (BIS) and divinylbenzene (DVB) as the multiple crosslinking agents. The morphology of the resulting superabsorbent resins revealed by SEM demonstrated that a hard shell layer was indeed formed due to surface crosslinking. The swelling and deswelling properties, and the mechanical strength of superabsorbents were investigated. The results indicated that the adding time of DVB and the amount of DVB participated in the crosslinking show a significant influence on the properties of superabsorbents. When DVB was added in polymerization later, the amount of DVB participated in reaction decreases and the surface crosslinked shell becomes thinner. It is suitable for DVB to be introduced in the later stage of the polymerization process, because the absorption rate of resin is efficiently improved in conjunction with higher water absorption. Furthermore, it was found that the mechanical strength of swollen superabsorbent with surface crosslinking was indeed enhanced in comparison with that of the conventional one.展开更多
文摘AIM:To investigate changes in choroidal thickness and vascularity in keratoconus patients treated with corneal crosslinking.METHODS:This study evaluated 28 eyes of 22 patients with keratoconus who underwent corneal crosslinking.The choroidal thicknesses were evaluated on enhanced depth imaging optical coherence tomography at the preoperative and postoperative 3d,1,and 3mo.Choroidal thickness in the four cardinal quadrants and the fovea were evaluated.The choroidal vascularity index was also calculated.RESULTS:There was no significant difference in central choroidal thickness between the preoperative and postoperative 3d,1mo(P>0.05).There was a significant increase in the 3mo(P=0.034)and a significant decrease in the horizontal choroidal vascularity index on the postoperative 3d(P=0.014),there was no statistically significant change in vertical axes and other visits in horizontal sections(P>0.05).CONCLUSION:This study sheds light on choroidal changes in postoperative corneal crosslinking for keratoconus.While it suggests the procedure’s relative safety for submacular choroid,more extensive research is necessary to confirm these findings and their clinical significance.
基金Supported by the Science&Technology Department of Sichuan Province(China)Funding Project(No.2021YFS0221,No.2023YFS0179)1.3.5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(No.2022HXFH032,No.ZYJC21058)the Postdoctoral Research Funding of West China Hospital,Sichuan University,China(No.2020HXBH044).
文摘●AIM:To explore the clinical efficacy and safety of stromal lenticule addition keratoplasty(SLAK)with corneal crosslinking(CXL)on patients with corneal ectasia secondary to femtosecond laser-assisted in situ keratomileusis(FS-LASIK).●METHODS:A series of 5 patients undertaking SLAK with CXL for the treatment of corneal ectasia secondary to FS-LASIK were followed for 4-9mo.The lenticules were collected from patients undertaking small incision lenticule extraction(SMILE)for the correction of myopia.Adding a stromal lenticule was aimed at improving the corneal thickness for the safe application of crosslinking and compensating for the thin cornea to improve its mechanical strength.●RESULTS:All surgeries were conducted successfully with no significant complications.Their best corrected visual acuity(BCVA)ranged from 0.05 to 0.8-2 before surgery.The pre-operational total corneal thickness ranged from 345-404μm and maximum keratometry(Kmax)ranged from 50.8 to 86.3.After the combination surgery,both the corneal keratometry(range 55.9 to 92.8)and total corneal thickness(range 413-482μm)significantly increased.Four out of 5 patients had improvement of corneal biomechanical parameters(reflected by stiffness parameter A1 in Corvis ST).However,3 patients showed decreased BCVA after surgery due to the development of irregular astigmatism and transient haze.Despite the onset of corneal edema right after SLAK,the corneal topography and thickness generally stabilized after 3mo.●CONCLUSION:SLAK with CXL is a potentially beneficial and safe therapy for advanced corneal ectasia.Future work needs to address the poor predictability of corneal refractometry and compare the outcomes of different surgical modes.
基金supported by the National Natural Science Foundation of China(82073001 and 82103423)Shanghai Natural Science Foundation(23ZR1454800)Scientific Research Foundation for the Introduction of Talent in Shanghai Stomatological Hospital(SSDC-2021-RC01).
文摘Carcinoma-associated fibroblasts(CAFs)are the main cellular components of the tumor microenvironment and promote cancer progression by modifying the extracellular matrix(ECM).The tumor-associated ECM is characterized by collagen crosslinking catalyzed by lysyl oxidase(LOX).Small extracellular vesicles(sEVs)mediate cell-cell communication.However,the interactions between sEVs and the ECM remain unclear.Here,we demonstrated that sEVs released from oral squamous cell carcinoma(OSCC)-derived CAFs induce collagen crosslinking,thereby promoting epithelial-mesenchymal transition(EMT).CAF sEVs preferably bound to the ECM rather than being taken up by fibroblasts and induced collagen crosslinking,and a LOX inhibitor or blocking antibody suppressed this effect.Active LOX(αLOX),but not the LOX precursor,was enriched in CAF sEVs and interacted with periostin,fibronectin,and bone morphogenetic protein-1 on the surface of sEVs.CAF sEV-associated integrinα2β1 mediated the binding of CAF sEVs to collagen I,and blocking integrinα2β1 inhibited collagen crosslinking by interfering with CAF sEV binding to collagen I.CAF sEV-induced collagen crosslinking promoted the EMT of OSCC through FAK/paxillin/YAP pathway.Taken together,these findings reveal a novel role of CAF sEVs in tumor ECM remodeling,suggesting a critical mechanism for CAF-induced EMT of cancer cells.
基金The authors acknowledge the funding support from the National Natural Science Foundation of China(Nos.52175474 and 51775324)the China Scholarship Council(No.202006890054).
文摘Three-dimensional printing technologies exhibit tremendous potential in the advancing fields of tissue engineering and regenerative medicine due to the precise spatial control over depositing the biomaterial.Despite their widespread utilization and numerous advantages,the development of suitable novel biomaterials for extrusion-based 3D printing of scaffolds that support cell attachment,proliferation,and vascularization remains a challenge.Multi-material composite hydrogels present incredible potential in this field.Thus,in this work,a multi-material composite hydrogel with a promising formulation of chitosan/gelatin functionalized with egg white was developed,which provides good printability and shape fidelity.In addition,a series of comparative analyses of different crosslinking agents and processes based on tripolyphosphate(TPP),genipin(GP),and glutaraldehyde(GTA)were investigated and compared to select the ideal crosslinking strategy to enhance the physicochemical and biological properties of the fabricated scaffolds.All of the results indicate that the composite hydrogel and the resulting scaffolds utilizing TPP crosslinking have great potential in tissue engineering,especially for supporting neo-vessel growth into the scaffold and promoting angiogenesis within engineered tissues.
基金Funded by the National Natural Science Foundation of China(No.32160348)the Department Program of Guizhou Province(No.ZK[2021]162)+1 种基金the Guizhou Province Science and Technology Plan Project(No.[2020]1Y128)the Forestry Department Foundation of Guizhou Province of China(Nos.J[2022]21 and[2020]C14)。
文摘The crosslinking mechanism of glyoxal and asparagine was analyzed,and the relationship between the mechanism and practical performances of soy protein-based adhesives was also discussed.It is shown that when pH=1 and 3,glyoxal reacted with asparagine in the form of major cyclic ether compounds.When pH=5,glyoxal reacted with asparagine in two structural forms of sodium glycollate and cyclic ether compounds.However,amidogens of asparagine were easy to develop protonation under acid conditions.Supplemented by the instability of cyclic ether compounds,the reaction activity and reaction degree between glyoxal and asparagine were relatively small.Under alkaline conditions,glyoxal mainly reacted with asparagine in the form of sodium glycollate.With the increase of pH,the polycondensation was more sufficient and the produced polycondensation products were more stable.The reaction mechanism between glyoxal and asparagine had strong correspondence to the practical performances of the adhesives.Glyoxal solution could develop crosslinking reactions with soy protein under both acid and alkaline conditions.Bonding strength and water resistance of the prepared soy protein-based adhesives were increased significantly.When pH>7,glyoxal had relatively high reaction activity and reaction intensity with soy protein,and the prepared adhesives had high crosslinking density and cohesion strength,showing relatively high bonding strength,water resistance and thermal stability.
基金supported by the Fundamental Research Funds for the Central Universities(XK1802-2)the National Key Basic Research Program of China(973 Program,2014CB643604)+2 种基金the National Natural Science Foundation of China(51673017)National Natural Science Foundation of China(21404005)the Natural Science Foundation of Jiangsu Province(BK20150273)。
文摘LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)material,as the promising cathode candidate for next-generation highenergy lithium-ion batteries,has gained considerable attention for extremely high theoretical capacity and low cost.Nevertheless,the intrinsic drawbacks of NCM811 such as unstable structure and inevitable interface side reaction result in severe capacity decay and thermal runaway.Herein,a novel polyimide(denoted as PI-Om DT)constructed with the highly polar and micro-branched crosslinking network is reported as a binder material for NCM811 cathode.The micro-branched crosslinking network is achieved by using 1,3,5-Tris(4-aminophenoxy)benzene(TAPOB)as a crosslinker via condensation reaction,which endows excellent mechanical properties and large free volume.Meanwhile,the massive polar carboxyl(-COOH)groups provide strong adhesion sites to active NCM811 particles.These functions of PIOm DT binder collaboratively benefit to forming the mechanically robust and homogeneous coating layer with rapid Li+diffusion on the surface of NCM811,significantly stabilizing the cathode structure,suppressing the detrimental interface side reaction and guaranteeing the shorter ion-diffusion and electron-transfer paths,consequently enhancing electrochemical performance.As compared to the NCM811 with PVDF binder,the NCM811 using PI-Om DT binder delivers a superior high-rate capacity(121.07 vs.145.38 m Ah g^(-1))at 5 C rate and maintains a higher capacity retention(80.38%vs.91.6%)after100 cycles at 2.5–4.3 V.Particularly,at the high-voltage conditions up to 4.5 and 4.7 V,the NCM811 with PI-Om DT binder still maintains the remarkable capacity retention of 88.86%and 72.5%after 100 cycles,respectively,paving the way for addressing the high-voltage operating stability of the NCM811 cathode.Moreover,the full-charged NCM811 cathode with PI-Om DT binder exhibits a significantly enhanced thermal stability,improving the safety performance of batteries.This work opens a new avenue for developing high-energy NCM811 based lithium-ion batteries with long cycle-life and superior safety performance using a novel and effective binder.
基金This work was supported by the Fund of Key Laboratory of Advanced Materials of Ministry of Education No.AdvMat-2023-4The National Natural Science Foundation of China(Grant No.52072210,52272278)The Sichuan Science and Technology Pro-gram(Grant No.2023ZYD0078).
文摘Despite their importance as components for flexible electronics,most stretchable hydrogels suffer from incomplete recovery after deformation,are prone to failure upon long-term repeated stretching,and cannot be exploited at subzero temperatures because of the freezing of their constituent water.Conse-quently,strategies for circumventing these drawbacks are highly sought after.This study describes the synthesis of a doubly(chemically and physically)crosslinked hydrogel from gelatin and methacrylic acid and demonstrates the suitability of this material for the fabrication of high-performance stretchable and environment-resistant supercapacitors and strain sensors.The performance of this supercapacitor(areal capacitance=1,210.2 mF/cm^(2) at a current density of 1 mA/cm^(2),maximum energy density=158.8μW.h/cm^(-1),maximum power density=659.5μW/cm^(2))was superior to that of most of integrated super-capacitors reported to date and was hardly affected by stretchable,low temperatures,bending,ice-cold water and strong acid/alkali solutions or long-term storage.Additionally,a strain sensor based on the above hydrogel was capable of accurately capturing human body motions when affixed to skin and recognising mouse movement(even in humid environments)after implantation into mouse legs.Our work may pave the way to high-performance stretchable and environment-resistant wearable electronics.
基金The National Natural Science Foundation of China(No.21005016)the Foundation of Educational Commission of Jiangsu Province(No.JHB2011-2)
文摘In order to improve the substrate diffusion properties and stability of an immobilized enzyme alginate microgels modified with TiO2 nanoparticles were employed as the enzyme immobilizing support.Ionotropic gelation was applied for the preparation of hybrid gels while Ca2+ Ce3+ Ni2+Cu2+and Fe3+were employed as the crosslinkers.Papain was selected as the model enzyme. UV-Vis spectroscopy was employed to investigate the activity of papain to evaluate kinetics and stability.Analysis results show that the highest affinity the lowest Michaelis-Menten constant Km =11.0 mg/mL and the highest stability are obtained when using Cu2+as the crosslinker.The effect of the mass ratio of TiO2 to papain on the stability and leakage of papain is also investigated and the results show that 10∶1 TiO2∶papain is optimal because the proper use of TiO2 can reduce enzyme leakage and ensure enzyme stability.Preparing Cu/alginate/TiO2 hybrid gels via ionotropic gelation can provide a satisfactory diffusion capability and enzyme stability.
基金supported by the National Natural Science Foundation of China (Grant No. 50575106)High Technology Project of Jiangsu Province, P. R. China (Grant No. BG2007046)
文摘Ultra High Molecular Weight Polyethylene(UHMWPE)has been widely used as a bearing material for artificial joint replacement over forty years.It is usually crosslinked by gamma rays irradiation before its implantation into human body.In this study,UHMWPE and UHMWPE/nano-hydroxyapatite(n-HA)composite were prepared by vacuum hot-pressing method.The prepared materials were irradiated by gamma rays in vacuum and molten heat treated in vacuum just after irradiation.The effect of filling n-HA with gamma irradiation on tribological properties of UHMWPE was investigated by using friction and wear experimental machine(model MM-200)under deionized water lubrication.Micro-morphology of worn surface was observed by metallographic microscope.Contact angle and hardness of the materials were also measured.The results show that contact angle and hardness are changed by filling n-HA and gamma irradiation.Friction coefficient and wear rate under deionized water lubrication are reduced by filling n-HA.While friction coefficient is increased and wear rate is reduced significantly by gamma irradiation.The worn surface of unfilled material is mainly characterized as adhesive wear and abrasive wear,and that of n-HA filled material is mainly characterized as abrasive wear.After gamma irradiation,the degrees of adhesive and abrasive wear for unfilled material and abrasive wear of n-HA filled material are significantly reduced.Unfilled and filled materials after irradiation are mainly shown as slight fatigue wear.The results indicate that UHMWPE and UHMWPE/n-HA irradiated at the dose of 150 kGy can be used as bearing materials in artificial joints for its excellent wear resistance compared to original UHMWPE.
基金supported by National "863" High-tech R & D Program of China(No. 2007AA03Z317)the National Natural Science Foundation of China(No.31070870)+1 种基金"973" Program of the Ministry of Science and Technology of China (No.2007CB714502, 2007CB936000)Shanghai Municipal Committee of Science and Techology (No. 08520740300, 1052nm06100 and 09JC1416500)
文摘Objective: Procyanidins (PC) are widely available natural polyphenols. The present study is designed to investigate if PC can inhibit angiogenesis in lung adenocarcinoma xenografts through crosslinking vascular extracellular matrix (ECM) and preventing proteolysis by matrix metalloproteinases (MMPs). Methods: Using the in vitro MMP-2 proteolysis and in vivo subcutaneous implantation models, we investigated if PC crosslinking inhibits MMP-mediated proteolysis. Using a cultured cell detachment assay, an in vitro angiogenesis assay, and a cell proliferation assay, we investigated if PC inhibits MMP-2-mediated endothelial cell detachment, angiogenesis, and cell proliferation, respectively. Using tumor xenografts, we evaluated if PC can inhibit growth of lung adenocarcinoma. Results: PC crosslink vascular ECM proteins, protecting them against proteolysis by MMPs in vitro and in vivo, protecting cultured human umbilical vein endothelial cells from detachment by MMP-2, and inhibiting in vitro angiogenesis. However, PC (0.75-100 μg/mL) did not inhibit vascular and tumor cells proliferation. PC injections (30 mg PC/kg bodyweight) in situ had anticancer effects on xenografts of lung adenocarcinoma, most likely by inhibiting angiogenesis during ECM proteolysis by MMPs. Conclusion: The results suggest that PC may be important MMP inhibitors that can be used as therapeutic anticancer agents.
文摘AIM: To evaluate the efficacy and safety of corneal collagen crosslinking (01) to prevent the progression of post-laser in situ keratomileusis (LASIK) corneal ectasia. METHODS: In a prospective, nonrandomized, single-centre study, CXL was performed in 20 eyes of 11 patients who had LASIK for myopic astigmatism and subsequently developed keratectasia. The procedure included instillation of 0.1% riboflavin-20% dextrane solution 30 minutes before UVA irradiation and every 5 minutes for an additional 30 minutes during irradiation. The eyes were evaluated preoperatively and at 1-, 3-, 6-, and 12-month intervals. The complete ophthalmologic examination comprised uncorrected visual acuity, best spectacle-corrected visual acuity, endothelial cell count, ultrasound pachymetry, corneal topography, and in vivo confocal microscopy. RESULTS: CXL appeared to stabilise or partially reverse the progression of post-LASIK corneal ectasia without apparent complication in our cohort. UCVA and BCVA improvements were statistically significant (P<0.05)beyond 12 months after surgery (improvement of 0.07 and 0.13 logMAR at 1 year, respectively). Mean baseline flattest meridian keratometry and mean steepest meridian keratometry reduction (improvement of 2.00 and 1.50 diopters (D), respectively) were statistically significant (P < 0.05) at 12 months postoperatively. At 1 year after 01, mean endothelial cell count did not deteriorate. Mean thinnest cornea pachymetry increased significantly. CONCLUSION: The results of the study showed a long-term stability of post-LASIK corneal ectasia after crosslinking without relevant side effects. It seems to be a safe and promising procedure to stop the progression of post-LASIK keratectasia, thereby avoiding or delaying keratoplasty.
基金This work was financially supported by the Program of National Natural Science Foundation of China(No.50473031).
文摘By incorporating copper sulfate (CuSO4) particles into acrylonitrile butadiene rubber (NBR) followed by heat pressing, a novel vulcanization method is developed in rubber through the formation of coordination crosslinking. This method totally differs from traditional covalent or non-covalent vulcanization approaches of rubber. No other vulcanizing agent or additional additive is involved in this process. By analyzing the results of DMA, XPS and FT-IR, it is found that the crosslinking of CuSO4 particles filled NBR was induced by in situ coordination between nitrogen atoms of nitrile groups (-CN) and copper ions (Cu^2+) from CuSO4. SEM and EDX results revealed the generation of a core (CuSO4 solid particle)- shell (adherent NBR) structure, which leads to a result that the crosslinked rubber has excellent mechanical properties. Moreover, poly(vinyl chloride) (PVC) and liquid acrylonitrile-butadiene rubber (LNBR) were used as mobilizer to improve the coordination crosslinking of CuSO4/NBR. The addition of PVC or LNBR could lead to higher crosslink density and better mechanical properties of coordination vulcanization. In addition, crystal water in CuSO4 played a positive role to coordination crosslinking of rubber because it decreased the metal point of CuSO4 and promoted the metal ionization.
文摘In this paper, radiation-induced crosslinking mechanism and characterization of the crosslinking density of F-40 and F-4 by X-ray photoelectron spectroscopy (XPS) have been studied. The dose of gelation of F-40 obtained from XPS is 4.1×10;Gy. It is found that crosslinking density is the largest in the range of certain dose for F-40 and F-4.
基金Supported by the National Natural Science Foundation of China(No.50973040)the Science and Technology Development Plan of Jilin Province, China(No.20090322)
文摘A novel type of crosslinkable poly(aryl ether sulfone)(PAES) bearing an allyl pendant(PES-OAllyl) was synthesized by a grafting reaction of hydrophenyl-containing PAES(PES-OH) and allyl bromide. PES-OH was prepared by a demethylation reaction of a methoxyphenylated PAES(PES-OCH3) in the presence of pyridine/hydrochlo- ride. The PES-OCH3 was synthesized by an aromatic nucleophilic substitution of bis(4-chlorophenyl)sulfone and (p-methoxy)phenylhydroquinone. Both DSC and solubility investigation were used to study the crosslinking behavior of PES-OAllyl. After heat treatment, the glass transition temperature(Tg) value of PES-OAllyl sharply increased from 165 ℃ to 227 ℃. Meanwhile, PES-OAllyl changed from a soluble polymer to an insoluble thermoset. In addition, TGA(thermogravimetric analysis) result suggests that the thermal stability of the crosslinked product was improved. All the data prove that the crosslinked PES-OAllyl could be a potential solvent-resistance high-performance material.
基金supports of the China Scholarship Council(CSC)for the author's study(J Wang and X Song)the Alexander von Humboldt Foundation for supporting the work of Dr.N.Szentmary at the Department of Ophthalmology of Saarland University,Homburg/Saar,Germanysupported by"Zentrales Innovationsprogram Mittelstand(ZIM)"of the German Federal Ministry of Economics and Technology(Project number:KF2152004MD0)
文摘Riboflavin-UVA photodynamic inactivation is a potential treatment altemative in therapy resistant infectious keratitis. The purpose of our study was to determine the impact of riboflavin-UVA photodynamic inactivation on viability, apop- tosis and activation of human keratocytes in vitro. Primary human keratocytes were isolated from human corneal buttons and cultured in DMEM/Ham's F12 medium supplemented with 10% fetal calf serum. Keratocytes underwent UVA light illumination (375 nm) for 4.10 minutes (2 J/cm2) during exposure to different concentrations of riboflavin. Twenty-four hours after treatment, cell viability was evaluated photometrically, whereas apoptosis, CD34 and alpha-smooth muscle actin (α-SMA) expression were assessed using flow cytometry. We did not detect significant changes in cell viability, apoptosis, CD34 and α-SMA expression in groups only treated with riboflavin or UVA light. In the group treated with riboflavin-UVA-photodynamic inactivation, viability of keratocytes decreased significantly at 0.1% riboflavin (P〈0.01) while the percentage of CD34 (P〈0.01 for both 0.05% and 0.1% riboflavin) and alpha-SMA positive keratocytes (P〈0.01 and P〈0.05 for 0.05% and 0.1% riboflavin, respectively) increased significantly compared to the controls. There was no significant change in the percentage of apoptotic keratocytes compared to controls at any of the used ribo- flavin concentrations (P=0.09 and P=0.13). We concluded that riboflavin-UVA-photodynamic-inactivation decreases viability of myofibroblastic transformation and multipotent haematopoietic stem cell transformation; however, it does not have an impact on apoptosis of human keratocytes in vitro.
文摘A polyacrylate/polyurethane (P(A)/P(U)) composite coating has been prepared by crosslinking an acetoacetylated polyacrylate with a vinylic group terminated polyurethane at room temperature. A model Michael reaction between ethyl acetoacetate (EAA) and methyl acrylate (MA) was designed to study the crosslinking mechanism. It was found that the two active hydrogen atoms in acetoacetyl group can both add to vinylic groups and the yield of mono-and bis-adducts are much affected by the molar ratio of acetoacetyl to vinylic groups. Higher crosslinking degree and better properties could be obtained with decreasing the molar ratio of the two active groups from 1/1 to 0.6/1 in the composite coatings.
基金Supported by the National Natural Science Foundation of China (20804007) the State Key Laboratory of Fine Chemicals(KF1014)
文摘A yellow crosslinking polymeric dye was prepared by grafting the flavone moiety containing azo chromophore onto polyvinylamine backbone.The λ max of this polymeric dye in water is 382 nm.The polymeric dye is fixed to silk and cotton with a crosslinking agent,2-chloro-4,6-di(aminobenzene-4'-β-sulphatoethylsulphone)-1,3,5-s-triazine,which acts as a bridge between the fiber and dye molecules.The fixation of this polymeric dye reaches 99% and the dyed samples exhibit excellent rubbing and washing fastness.
基金the National Natural Science Foundation of China (No.20704040).
文摘The effects of three organic colorants on photo-initiated crosslinking and photo-oxidation degradation of polyethylene (PE) samples irradiated by microwave excited (MWE) UV lamp in the melt and the related mechanism have been studied by gel content and thermal extension rate determinations,X-ray photoelectron spectroscopy (XPS),mechanical property tests,UV spectroscopy,and light microscope.The data from the gel content and thermal extension rate determinations of photo-crosslinked polyethylene (XLPE) sample...
文摘A series of acrylic-based superabsorbent resins were synthesized by inverse suspension polymerization, using potassium persulfate as the initiator, N, N'-methylene bisacrylamide (BIS) and divinylbenzene (DVB) as the multiple crosslinking agents. The morphology of the resulting superabsorbent resins revealed by SEM demonstrated that a hard shell layer was indeed formed due to surface crosslinking. The swelling and deswelling properties, and the mechanical strength of superabsorbents were investigated. The results indicated that the adding time of DVB and the amount of DVB participated in the crosslinking show a significant influence on the properties of superabsorbents. When DVB was added in polymerization later, the amount of DVB participated in reaction decreases and the surface crosslinked shell becomes thinner. It is suitable for DVB to be introduced in the later stage of the polymerization process, because the absorption rate of resin is efficiently improved in conjunction with higher water absorption. Furthermore, it was found that the mechanical strength of swollen superabsorbent with surface crosslinking was indeed enhanced in comparison with that of the conventional one.