The security of certain classes of the generalized self-shrinking sequence (GSS) generators is analyzed. Firstly, it is shown that the security of these GSS generators is equivalent to the security of the GSS genera...The security of certain classes of the generalized self-shrinking sequence (GSS) generators is analyzed. Firstly, it is shown that the security of these GSS generators is equivalent to the security of the GSS generators of the class-1, after which two effective key recovery attacks on the GSS generators of the class-1 are developed to evaluate their security.展开更多
Reconfigurable computing has grown to become an important and large field of research, it offers advantages over traditional hardware and software implementations of computational algorithms. The Advanced Encryption S...Reconfigurable computing has grown to become an important and large field of research, it offers advantages over traditional hardware and software implementations of computational algorithms. The Advanced Encryption Standard (AES) algorithm is widely applied in government department and commerce. This paper analyzed the AES algorithms with different cipher keys, adopted a novel key scheduler that generated the round key real-time, proposed a dynamically reconfigurable encryption system which supported the AES algorithm with different cipher keys, and designed the architecture of the reconfigurable system. The dynamically reconfigurable AES system had been realized on FPGA. The result proves that the reconfigurable AES system is flexible, lower cost and high security level.展开更多
基金the National Natural Science Foundation of China (60273084).
文摘The security of certain classes of the generalized self-shrinking sequence (GSS) generators is analyzed. Firstly, it is shown that the security of these GSS generators is equivalent to the security of the GSS generators of the class-1, after which two effective key recovery attacks on the GSS generators of the class-1 are developed to evaluate their security.
基金Supported by the National Natural Science Foun-dation of China (60374008)
文摘Reconfigurable computing has grown to become an important and large field of research, it offers advantages over traditional hardware and software implementations of computational algorithms. The Advanced Encryption Standard (AES) algorithm is widely applied in government department and commerce. This paper analyzed the AES algorithms with different cipher keys, adopted a novel key scheduler that generated the round key real-time, proposed a dynamically reconfigurable encryption system which supported the AES algorithm with different cipher keys, and designed the architecture of the reconfigurable system. The dynamically reconfigurable AES system had been realized on FPGA. The result proves that the reconfigurable AES system is flexible, lower cost and high security level.