Comisión Nacional de Energía Atómica (CNEA) has the responsibility for restoring uranium mining facilities once the operations have finished.CNEA,within its Environmental Program and in compliance with ...Comisión Nacional de Energía Atómica (CNEA) has the responsibility for restoring uranium mining facilities once the operations have finished.CNEA,within its Environmental Program and in compliance with its legal responsibilities,decides to implement a restoration project for all sites related to the mining and processing of uranium ores.The Malargüe Site is located within the Province of Mendoza in the city of Malargüe.It is the first site to successfully complete its remediation.The activities consist of relocation of tailings to an engineering repository.The tailings management(encapsulation) and rehabilitation of the area was finished in June 2017.The remediation alternative for the ore tailings was selected after conducting comparative studies and submitted the project to the society for consideration.The objective of the encapsulation of the mineral tails is to isolate them from the environment,also proceeding with the decontamination and rehabilitation of the area (landscaping,post-closure monitoring and 20 years monitoring period).Encapsulation consisted of the construction of a containment cell for the mine tailings,to isolate them and prevent pollutants from entering the environment through the transfer routes.To clean the impacted areas,the soil was removed,it was incorporated into the encapsulation,and the filling was carried out with natural soils from the area.Remediation prevents radon transfer to the environment,as ^(222)Ra is an alpha emitter with a half-life of four days,which produces its own radioactive progeny.Radon progeny are solids,and when a ^(222)Ra nucleus emits an alpha particle into the air,the resulting ^(218)Po nucleus,momentarily electrically charged,adheres to any dust particle.Remediation prevents the discharge into the air containing radon and also containing dust particles charged with intensely radioactive radon progeny.The tasks mentioned make it possible to decrease radon emanation,reduce radiological risks to the public and prevent the entry of rainwater into the system.In addition,the containment system prevents the discharge of contaminated liquids into the environment,avoiding contamination of the groundwater.All these activities are according to the concepts of sustainability.展开更多
Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materi...Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materials developed as photocatalysts,the core-shell metal/covalent-organic framework(MOF or COF)photocatalysts have garnered significant attention due to their highly porous structure and the adjustability in both structure and functionality.The existing reviews on core-shell organic framework photocatalytic materials have mainly focused on core-shell MOF materials.However,there is still a lack of indepth reviews specifically addressing the photocatalytic performance of core-shell COFs and MOFs@COFs.Simultaneously,there is an urgent need for a comprehensive review encompassing these three types of core-shell structures.Based on this,this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable core-shell organic framework photocatalysts towards appropriate photocatalytic energy conversion and environmental governance.Firstly,the classification,synthesis,formation mechanisms,and reasonable regulation of core-shell organic framework were summarized.Then,the photocatalytic applications of these three kinds of core-shell structures in different areas,such as H_(2)evolution,CO_(2)reduction,and pollutants degradation are emphasized.Finally,the main challenges and development prospects of core-shell organic framework photocatalysts were introduced.This review aims to provide insights into the development of a novel generation of efficient and stable core-shell organic framework materials for energy conversion and environmental remediation.展开更多
Rice(Oryza sativa L.)paddies are increasingly threatened by cadmium(Cd)pollution,and potentially serve as CH_(4)emitters to the atmosphere.Remediation agents widely mitigate Cd pollution in paddy soil,however,we know ...Rice(Oryza sativa L.)paddies are increasingly threatened by cadmium(Cd)pollution,and potentially serve as CH_(4)emitters to the atmosphere.Remediation agents widely mitigate Cd pollution in paddy soil,however,we know little about their regulations on CH_(4)emission.Here,via adding biochar(B),sulfhydryl-modified palygorskite(SMP),and selenium foliar fertilizer(SFF),we conducted a pot experiment to investigate soil and rice Cd contents together with in-situ CH_(4)f luxes.Compared to CK,the addition of SMP,SFF,and B-SMP reduced Cd in brown rice by 25%to 50%,25%,and 50%to 75%,respectively.Agents 7%B,7%B-0.01%SMP,and SFF reduced CH_(4)emissions by 8.46%,5.30%,and 4.11%,respectively.CH_(4)emission increased gradually along the growing season,with the cumulative CH_(4)fluxes ranging between 338.82 and 619.13 kg hm^(-2).Our results highlight that mixed 7%B-0.01%SMP and SFF showed collaborative eff ects on Cd remediation and CH_(4)emission.This study reveals the feasibility of reducing Cd pollution and CH_(4)emission in karst rice paddies,which hopes to supplement the knowledge of collaborative controls on soil remediation and carbon emission.展开更多
Salinized soil is an important reserved arable land resource in China.The management and utilization of salinized soil can safeguard the current size of arable land and a stable grain yield.Salt accumulation will lead...Salinized soil is an important reserved arable land resource in China.The management and utilization of salinized soil can safeguard the current size of arable land and a stable grain yield.Salt accumulation will lead to the deterioration of soil properties,destroy soil production potential and damage soil ecological functions,which in turn will threaten global water and soil resources and food security,and affect sustainable socio-economic development.Microorganisms are important components of salinized soil.Microbial remediation is an important research tool in improving salinized soil and is key to realizing sustainable development of agriculture and the ecosystem.Knowledge about the impact of salinization on soil properties and measures using microorganisms in remediation of salinized soil has grown over time.However,the mechanisms governing these impacts and the ecological principles for microbial remediation are scarce.Thus,it is imperative to summarize the effects of salinization on soil physical,chemical,and microbial properties,and then review the related mechanisms of halophilic and halotolerant microorganisms in salinized soil remediation via direct and indirect pathways.The stability,persistence,and safety of the microbial remediation effect is also highlighted in this review to further promote the application of microbial remediation in salinized soil.The objective of this review is to provide reference and theoretical support for the improvement and utilization of salinized soil.展开更多
Bacterial populations isolated from treated soil,artificially contaminated with lead(Pb)and cadmium(Cd)and undergoing a phytoremediation process were studied to determine their potential application in soil remediatio...Bacterial populations isolated from treated soil,artificially contaminated with lead(Pb)and cadmium(Cd)and undergoing a phytoremediation process were studied to determine their potential application in soil remediation.The physicochemical parameters evaluated in the soil varied significantly.Ten bacterial strains were selected from each polluted soil to test tolerance and growth in contaminated media.The concentrations of heavy metals tested were 1,000 ppm for lead and 850 ppm for cadmium.These strains were morphologically identified through Gram staining.Four strains showing the most significant growth in both contaminants were then selected to verify their tolerance to different concentrations of heavy metals.The results demonstrated that the selected bacteria have high tolerance to Pb,resisting inhibition up to 2,000 ppm.In contrast,strains exposed to cadmium tended to slow their growth as the concentration increased.展开更多
Urban landscape water body is not only an important part of urban landscape construction,but also an important way to maintain landscape diversity and biodiversity,carrying the beautiful yearning of urban residents fo...Urban landscape water body is not only an important part of urban landscape construction,but also an important way to maintain landscape diversity and biodiversity,carrying the beautiful yearning of urban residents for natural life.A good state of urban landscape water body is crucial to the ecological environment of the city.However,due to the poor kinetic energy of urban landscape water body and the influence of various human factors,the quality of urban landscape water body often declines,and urban population is threatened by water security problems.Through the study of several water body ecological remediation technologies,relevant suggestions are put forward,in order to provide a reference for water pollution restoration and treatment in urban human settlement environment.展开更多
Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identi...Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.展开更多
This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition...This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition of goethite-modified biochar significantly enhanced the remediation efficiency of As(III),achieving a maximum removal rate of 100%.Conversely,pure biochar exhibited high efficiency in the removal of Hg(II),with a maximum removal rate approaching 100%.Furthermore,the pH level of the water significantly influenced the adsorption efficiency of heavy metal ions,with the optimal removal performance observed at a pH of 6.0.The PRB system demonstrated excellent removal rates under low concentrations of heavy metals.However,as the concentration increased,the remediation efficiency exhibited a slight decrease.In summary,the findings of this study provide compelling evidence for the use of modified biochar in the construction of PRBs for the remediation of mercury and arsenic-polluted water bodies.Furthermore,the study reveals the mechanism by which pH and heavy metal concentration influence remediation efficiency.展开更多
Harvesting solar energy to drive the semiconductor photocatalysis offers a promising tactic to address ever-growing challenges of both energy shortage and environmental pollution.Design and synthesis of nano-heterostr...Harvesting solar energy to drive the semiconductor photocatalysis offers a promising tactic to address ever-growing challenges of both energy shortage and environmental pollution.Design and synthesis of nano-heterostructure photocatalysts with controllable components and morphologies are the key factors for achieving highly efficient photocatalytic processes.Onedimensional(1D)semiconductor nanofibers produced by electrospinning possess a large ratio of length to diameter,high ratio of surface to volume,small grain sizes,and high porosity,which are ideally suited for photocatalytic reactions from the viewpoint of structure advantage.After the secondary treatment of these nanofibers through the solvothermal,gas reduction,in situ doping,or assembly methods,the multi-component nanofibers with hierarchical nano-heterostructures can be obtained to further enhance their light absorption and charge carrier separation during the photocatalytic processes.In recent years,the electrospun semiconductorbased nano-heterostructures have become a“hot topic”in the fields of photocatalytic energy conversion and environmental remediation.This review article summarizes the recent progress in electrospinning synthesis of various kinds of high-performance semiconductor-based nano-heterostructure photocatalysts for H2 production,CO_(2) reduction,and decomposition of pollutants.The future perspectives of these materials are also discussed.展开更多
Nanoscale zero-valent iron particles(NZVI) produced by using green tea(GT) extract as a reductant can remove Cr(Ⅵ) from water effectively,which can be utilized in groundwater remediation.In order to define the reacti...Nanoscale zero-valent iron particles(NZVI) produced by using green tea(GT) extract as a reductant can remove Cr(Ⅵ) from water effectively,which can be utilized in groundwater remediation.In order to define the reaction mechanism and removal effect in the aquifer,in this study,GT-NZVI particles were prepared and measured by some characterization methods to define their surface performance,and then batch and one-dimensional experiments were carried out to reveal the reaction properties of GT-NZVI and Cr(Ⅵ) in groundwater.The results showed that the prepared GT-NZVI particles were regular spherical with a diameter of 10-20 nm,which could disperse in water stably.The main component of GT-NZVI wasα-Fe with superficial polyphenols as a stabilizer.GT-NZVI suspension had good ability to reduce the Cr(Ⅵ) to Cr(Ⅲ) in water.When the concentration of GT-NZVI was 1 g/L,the removal efficiency of Cr(Ⅵ)with an initial concentration of 100 mg/L reached 92.8% in 1 h reaction.In column tests,GT-NZVI passed through the natural sand column successfully with an average outflow percentage of 71.2%.The simulated in-situ reaction zone(IRZ) with GT-NZVI was used to remediate Cr(Ⅵ) contaminated groundwater.The oufflow concentration of Cr(Ⅵ) kept in 0.14-0.32 mg/L corresponding to the outflow rate below 0.32%within 15 days,and the removal efficiency of Cr(Ⅵ) by IRZ with GT-NZVI decreased with the increase of aquifer medium particle size,groundwater flow rate and ionic strength.Most of Cr(Ⅲ) as reduzate was adsorbed or immobilized on the surface or in the lattice of GT-NZVI,which indicated effective immobilization for chromium.展开更多
In this research study, we have synthesized the bio-capped ZnO/g-C_(3)N_(4) nanocomposites by employing lemon juice(Citrus limon) as a stabilizer and mediator. Fruitfully, lemon juice which contains various acidic fun...In this research study, we have synthesized the bio-capped ZnO/g-C_(3)N_(4) nanocomposites by employing lemon juice(Citrus limon) as a stabilizer and mediator. Fruitfully, lemon juice which contains various acidic functional groups and citric acid has the capability to block the surface of g-C_(3)N_(4) from chemical reactivity and activated the surface of g-C_(3)N_(4) for various reactions. Consequently, the agglomeration behavior and controlled shape of g-C_(3)N_(4) has also been achieved. Our experimental results i.e. XRD,TEM, HRTEM, PL, FS, XPS, and PEC have confirmed that the lemon juice mediated and green g-C_(3)N_(4)(L-CN) have good performances and remarkable visible light photocatalytic activities as compared to the chemically synthesized g-C_(3)N_(4)(CN). Furthermore, the small surface area and low charge separation of g-C_(3)N_(4) is upgraded by coupling with Zn O nanoparticles. It is proved that the coupling of Zn O worked as a facilitator and photoelectron modulator to enhance the charge separation of g-C_(3)N_(4). Compared to pristine lemon-mediated green g-C_(3)N_(4)(L-CN), the most active sample 5Zn O/L-CN showed ~ 5-fold improvement in activities for ciprofloxacin(CIP) and methylene blue(MB) degradation. More specifically,the mineralization process and degradation pathways, and the mineralization process of ciprofloxacin(CIP) and methylene blue(MB) are suggested. Finally, our present novel research work will provide new access to synthesize the eco-friendly and bio-caped green g-C_(3)N_(4)nanomaterials and their employment for pollutants degradation and environmental purification.展开更多
The C-F bond is one of the strongest in organic chemistry. It is responsible for the great stability of perfluoroalkyl and polyfluoroalkyl substances, commonly referred to as “PFAS”, a group of man-made chemicals th...The C-F bond is one of the strongest in organic chemistry. It is responsible for the great stability of perfluoroalkyl and polyfluoroalkyl substances, commonly referred to as “PFAS”, a group of man-made chemicals that include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). Thermal stability, surface activity, dielectric characteristics, chemical resistance, and inertness are just a few of the technical advantages that this group has over hydrocarbons, and since the 1950s, these chemicals have been largely utilized in a variety of domestic and industrial endeavors. The hydrophilic and lipophilic nature of this class of chemicals accounts for its uniqueness. Up until today, the chemistry and ecotoxicology of these chemicals continue to emerge. Issues concerning the destructive power of ignorance expedited by an ineffective regulatory institution continue to show that manufacturing chemicals are insufficient without giving serious thought to issues of openness and humanity’s awareness of its own safety. When discussing the nature of humanity and how it can be defined or redefined, it is important to allude to the significance of integrating business with ethics in its various forms. This paper highlights the importance of holding polluters accountable for PFAS contamination cleanup costs while emphasizing the need for chemical manufacturers to test and disclose the health and environmental effects of PFAS compounds. In addition, the sources, types, properties, applications, distribution, toxicological implications, regulations, and analytical methods associated with PFAS (per- and polyfluoroalkyl substances) are explored. The effectiveness of the remedial methods described in this paper needs to be progressively tested while exploring other sustainable approaches.展开更多
Statistical comparison of two remediation methods: Remedial nutrient solution and enhanced natural attenuation were analyzed in terms of TPH of different soil samples collected from Khana Local Government Area of Rive...Statistical comparison of two remediation methods: Remedial nutrient solution and enhanced natural attenuation were analyzed in terms of TPH of different soil samples collected from Khana Local Government Area of Rivers State, Nigeria at different locations and placed inside sample bottles labelled A to D and replicated into two, one for each of the above treatment technique. The TPH of the soil was determined using GC analyzer after solvent extraction was carried out using hexane/dichloromethane mixture. Three batches of treatment were performed on the samples at every interval of eight weeks for a duration of six months. The result obtained was analyzed using a two-way ANOVA factorial experimental design to test the significance of the various sources of variation. From the result obtained, source of variation for sample and interactions were non-significantly different from each other which means that irrespective of the number of samples analyzed or the combination of both samples and batches of treatment, they will still not be significantly different from each other. The source of variation for batch and replications were significantly different from each other and this means that irrespective of the batches of treatment applied or the number of replications (methods of treatment used), they will always be significantly different from each other. The individual comparison of each sample showed that the efficiency of the Remedial Nutrient Solution method was better than Enhanced Natural Attenuation method.展开更多
The C-F bond is one of the strongest in organic chemistry. It is responsible for the great stability of perfluoroalkyl and polyfluoroalkyl substances, commonly referred to as “PFAS”, a group of man-made chemicals th...The C-F bond is one of the strongest in organic chemistry. It is responsible for the great stability of perfluoroalkyl and polyfluoroalkyl substances, commonly referred to as “PFAS”, a group of man-made chemicals that include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). Thermal stability, surface activity, dielectric characteristics, chemical resistance, and inertness are just a few of the technical advantages that this group has over hydrocarbons, and since the 1950s, these chemicals have been largely utilized in a variety of domestic and industrial endeavors. The hydrophilic and lipophilic nature of this class of chemicals accounts for its uniqueness. Up until today, the chemistry and ecotoxicology of these chemicals continue to emerge. Issues concerning the destructive power of ignorance expedited by an ineffective regulatory institution continue to show that manufacturing chemicals are insufficient without giving serious thought to issues of openness and humanity’s awareness of its own safety. When discussing the nature of humanity and how it can be defined or redefined, it is important to allude to the significance of integrating business with ethics in its various forms. This paper highlights the importance of holding polluters accountable for PFAS contamination cleanup costs while emphasizing the need for chemical manufacturers to test and disclose the health and environmental effects of PFAS compounds. In addition, the sources, types, properties, applications, distribution, toxicological implications, regulations, and analytical methods associated with PFAS (per- and polyfluoroalkyl substances) are explored. The effectiveness of the remedial methods described in this paper needs to be progressively tested while exploring other sustainable approaches.展开更多
Traditional medicine(TM)has played an essential part in maternity services around the world,which has led to increased utilization among pregnant women.Herbs,herbal preparations,and completed herbal products are examp...Traditional medicine(TM)has played an essential part in maternity services around the world,which has led to increased utilization among pregnant women.Herbs,herbal preparations,and completed herbal products are examples of TMs that contain active substances such as plant parts or other plant components that are thought to have therapeutic advantages.This study review aimed to identify the herbs commonly used,reasons for use,and effect of use,to make adequate recommendations on herbal medicine use as a remedy for pregnancy and labor.Incorporating evidence from reviews,personal correspondence,and diaries,this study demonstrates that about 80%of people used TM such as herbal remedies for sickness diagnosis,prevention,treatment,and promotion of general well‑being.Due to its accessibility,cost,and availability,TM is usually used by expectant mothers.Examples of TM used in pregnancy and labor include honey,aloe,raspberry,jute mallow,and hibiscus leaves.It is important to note that its use in pregnancy and labor can be beneficial or harmful to both mother and child.Lack of standardization,financial risk,lack of safety,and effectiveness are challenges to TM.There is a need of creating awareness of the safe use and effects of TM in pregnancy and labor through the provision of health education programs for women in the community.展开更多
Phytoremediation is a viable,effective,and economically attractive technology that uses plants to remove chemical contaminants from soil and groundwater.A major munitions contaminant,TNT(2,4,6-Trinitrotoluene)can be r...Phytoremediation is a viable,effective,and economically attractive technology that uses plants to remove chemical contaminants from soil and groundwater.A major munitions contaminant,TNT(2,4,6-Trinitrotoluene)can be remediated by several plants such as Myriophyllum aquaticum(Parrot Feather),and Catharanthus roseus.This study focuses on screening plants that have natural antioxidant phytochemicals for their ability to remediate TNT,and heavy metals from contaminated water sources,groundwater and soil.Three kinds of bell peppers,Capsicum frutescens(green,red,and yellow),which contain both the antioxidant phytochemicals(carotene and vitamin C)and tomato,which also contains vitamin C,were tested to confirm their antioxidizing and remediation abilities respectively.Results for remediation abilities were analyzed by HPLC(High Performance Liquid Chromatography).Results also suggested that plants which had antioxidant properties were also able to remediate TNT and heavy metals effectively,thereby suggesting a possible correlation between antioxidant and phytoremediation abilities of the plants studied.展开更多
[Objectives]To prepare biomanganese oxide/biochar composite(BMO-BC)and examine its remediation performance on arsenic contamination.[Methods]The BMO-BC was prepared by cultivating Pseudomonas putida MnB1 in the presen...[Objectives]To prepare biomanganese oxide/biochar composite(BMO-BC)and examine its remediation performance on arsenic contamination.[Methods]The BMO-BC was prepared by cultivating Pseudomonas putida MnB1 in the presence of Mn 2+and biochar.[Results]The initial concentration of Mn 2+in the culture system had no significant effect on the growth rate and domestication cycle of Pseudomonas putida MnB1.The results of SEM-EDS and XRD analysis confirm that the adsorbent prepared in this experiment was a composite of biomanganese oxide and biochar particles.The results of arsenic pollution removal test in simulated environment showed that the in-situ formed BMO-BC composite had certain removal effect on As(III)and the presence of biochar particles and manganese dioxide in the reaction system and the manganese oxidation ability of microbial strain MnB1 affect its remediation performance to As(III).[Conclusions]When the initial concentration is in the range of 0-10.0 mg/L,the isothermal adsorption data of BMO-BC on As(III)conforms to the Langmuir model.展开更多
Based on the literature and experimental results, three kinds of soil amendments, namely rice biochar, hydroxyapatite and potassium dihydrogen phosphate(KH2PO4), and deeper ploughing were selected to evaluate the fiel...Based on the literature and experimental results, three kinds of soil amendments, namely rice biochar, hydroxyapatite and potassium dihydrogen phosphate(KH2PO4), and deeper ploughing were selected to evaluate the field application effect of soil amendments and agronomic measures on the remediation of Cd contamination in greenhouse vegetable fields. Cd-contaminated greenhouse screening was conducted from 2015 to 2017. In September 2017, comparative tests of eight treatments were performed, and a preferred test was performed in September 2018. The screening results of the contaminated areas indicated that the distribution of over-standard sites was uneven, and Cd content was significantly different. Over-standard rate of No.4 greenhouse was 83.33% and was the highest, and the average content of Cd in soil was 0.535 mg/kg. It was used as a comparative test greenhouse for eight treatments. No.1 greenhouse was selected as the preferred test greenhouse, with three over-standard plots having average Cd concentrations of 0.530, 0.568 and 0.792 mg/kg. The comparative test results showed that after 8 months of remediation, the content of available Cd in the treatment of hydroxyapatite+rice biochar+deeper ploughing(T6) was reduced by 32.55% compared with CK(the control) and 24.96% than 2 months of remediation. The content of available Cd using the treatment of potassium dihydrogen phosphate+rice biochar+deeper ploughing(T7) decreased by 47.88% compared with CK and 31.00% than 2 months of remediation. The preferred remediation test results showed that in the treatment of hydroxyapatite+rice biochar+deeper ploughing: the mean Cd content decreased from 0.489 to 0.372 mg/kg, reducing by 23.86%, and the mean did not exceed the standard. Compared with CK, the mean content of available Cd decreased by 10.71% after 8 months, and the lowest content of available Cd in three treatments was 0.133 mg/kg. In addition, the Cd content, bioconcentration factor(BCF) and translocation coefficient(TF) of bean aboveground plants were decreased by 15.86%, 23.68% and 25.77%, respectively when compared with CK. Rice biochar+hydroxyapatite +deeper ploughing is a favoured technology for the remediation of Cd-contaminated greenhouse vegetable fields.展开更多
Indigenous peoples are the custodians of traditional knowledge,encompassing their ideas,innovations,and methods.Throughout history,both plants and animals have served as valuable sources for medicinal remedies,capable...Indigenous peoples are the custodians of traditional knowledge,encompassing their ideas,innovations,and methods.Throughout history,both plants and animals have served as valuable sources for medicinal remedies,capable of treating or preventing illnesses.This article aims to offer a concise overview of the traditional medical uses of vertebrates and the derived products in both human and veterinary medicine.Animal species are utilized as raw materials,and the resulting products are employed to cure a wide array of ailments.In different regions of India,indigenous peoples have diverse traditional applications for vertebrates and their by-products,which are utilized to treat human and animal illnesses.In various parts of India,medical practices involve the use of forty percent mammals,seven percent birds,eleven percent reptiles,eight percent fish,and two percent amphibians.Kerala employs around 69 different animal species and their by-products for the treatment of human and veterinary ailments.Similarly,the Theni district of Tamil Nadu utilizes 69 animals,the state of Madhya Pradesh employs 18 animals,the state of Tripura utilizes 25 animals,and the state of Assam employs 44 animals for the treatment of human and veterinary illnesses.Consequently,the main objective of this review is to provide a summary of the traditional therapeutic applications of animals and the resulting products.展开更多
文摘Comisión Nacional de Energía Atómica (CNEA) has the responsibility for restoring uranium mining facilities once the operations have finished.CNEA,within its Environmental Program and in compliance with its legal responsibilities,decides to implement a restoration project for all sites related to the mining and processing of uranium ores.The Malargüe Site is located within the Province of Mendoza in the city of Malargüe.It is the first site to successfully complete its remediation.The activities consist of relocation of tailings to an engineering repository.The tailings management(encapsulation) and rehabilitation of the area was finished in June 2017.The remediation alternative for the ore tailings was selected after conducting comparative studies and submitted the project to the society for consideration.The objective of the encapsulation of the mineral tails is to isolate them from the environment,also proceeding with the decontamination and rehabilitation of the area (landscaping,post-closure monitoring and 20 years monitoring period).Encapsulation consisted of the construction of a containment cell for the mine tailings,to isolate them and prevent pollutants from entering the environment through the transfer routes.To clean the impacted areas,the soil was removed,it was incorporated into the encapsulation,and the filling was carried out with natural soils from the area.Remediation prevents radon transfer to the environment,as ^(222)Ra is an alpha emitter with a half-life of four days,which produces its own radioactive progeny.Radon progeny are solids,and when a ^(222)Ra nucleus emits an alpha particle into the air,the resulting ^(218)Po nucleus,momentarily electrically charged,adheres to any dust particle.Remediation prevents the discharge into the air containing radon and also containing dust particles charged with intensely radioactive radon progeny.The tasks mentioned make it possible to decrease radon emanation,reduce radiological risks to the public and prevent the entry of rainwater into the system.In addition,the containment system prevents the discharge of contaminated liquids into the environment,avoiding contamination of the groundwater.All these activities are according to the concepts of sustainability.
基金supported by the National Natural Science Foundation of China(52161145409,21976116)SAFEA of China("Belt and Road”Innovative Talent Exchange Foreign Expert Project#2023041004L)(High-end Foreign Expert Project#G2023041021L)the Alexander-von-Humboldt Foundation of Germany(GroupLinkage Program)。
文摘Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materials developed as photocatalysts,the core-shell metal/covalent-organic framework(MOF or COF)photocatalysts have garnered significant attention due to their highly porous structure and the adjustability in both structure and functionality.The existing reviews on core-shell organic framework photocatalytic materials have mainly focused on core-shell MOF materials.However,there is still a lack of indepth reviews specifically addressing the photocatalytic performance of core-shell COFs and MOFs@COFs.Simultaneously,there is an urgent need for a comprehensive review encompassing these three types of core-shell structures.Based on this,this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable core-shell organic framework photocatalysts towards appropriate photocatalytic energy conversion and environmental governance.Firstly,the classification,synthesis,formation mechanisms,and reasonable regulation of core-shell organic framework were summarized.Then,the photocatalytic applications of these three kinds of core-shell structures in different areas,such as H_(2)evolution,CO_(2)reduction,and pollutants degradation are emphasized.Finally,the main challenges and development prospects of core-shell organic framework photocatalysts were introduced.This review aims to provide insights into the development of a novel generation of efficient and stable core-shell organic framework materials for energy conversion and environmental remediation.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB40020200)the National Natural Science Foundation of China(41663015,42273021)+4 种基金Guizhou Science and Technology Cooperation Basic Project([2020]1Y188)the construction project of Key Laboratory of State Ethnic Aff airs Commission([2020]No 0.91 of DDA office)the Innovation Team Project of Guizhou Higher Education([2022]013)Foundation of Guizhou Minzu University(GZMU[2019]YB11)Thanks to the support of the independent deployment project of the State Key Laboratory of Environmental Geochemistry。
文摘Rice(Oryza sativa L.)paddies are increasingly threatened by cadmium(Cd)pollution,and potentially serve as CH_(4)emitters to the atmosphere.Remediation agents widely mitigate Cd pollution in paddy soil,however,we know little about their regulations on CH_(4)emission.Here,via adding biochar(B),sulfhydryl-modified palygorskite(SMP),and selenium foliar fertilizer(SFF),we conducted a pot experiment to investigate soil and rice Cd contents together with in-situ CH_(4)f luxes.Compared to CK,the addition of SMP,SFF,and B-SMP reduced Cd in brown rice by 25%to 50%,25%,and 50%to 75%,respectively.Agents 7%B,7%B-0.01%SMP,and SFF reduced CH_(4)emissions by 8.46%,5.30%,and 4.11%,respectively.CH_(4)emission increased gradually along the growing season,with the cumulative CH_(4)fluxes ranging between 338.82 and 619.13 kg hm^(-2).Our results highlight that mixed 7%B-0.01%SMP and SFF showed collaborative eff ects on Cd remediation and CH_(4)emission.This study reveals the feasibility of reducing Cd pollution and CH_(4)emission in karst rice paddies,which hopes to supplement the knowledge of collaborative controls on soil remediation and carbon emission.
基金the National Natural Science Foundation of China(No.42107513)the Key Projects of Natural Science Foundation of Gansu Province(No.22JR5RA051)+1 种基金the Gansu Province Science and Technology project(No.21JR7RA070)the Key Research and Development Program of Gansu Province(No.21YF5FA151).
文摘Salinized soil is an important reserved arable land resource in China.The management and utilization of salinized soil can safeguard the current size of arable land and a stable grain yield.Salt accumulation will lead to the deterioration of soil properties,destroy soil production potential and damage soil ecological functions,which in turn will threaten global water and soil resources and food security,and affect sustainable socio-economic development.Microorganisms are important components of salinized soil.Microbial remediation is an important research tool in improving salinized soil and is key to realizing sustainable development of agriculture and the ecosystem.Knowledge about the impact of salinization on soil properties and measures using microorganisms in remediation of salinized soil has grown over time.However,the mechanisms governing these impacts and the ecological principles for microbial remediation are scarce.Thus,it is imperative to summarize the effects of salinization on soil physical,chemical,and microbial properties,and then review the related mechanisms of halophilic and halotolerant microorganisms in salinized soil remediation via direct and indirect pathways.The stability,persistence,and safety of the microbial remediation effect is also highlighted in this review to further promote the application of microbial remediation in salinized soil.The objective of this review is to provide reference and theoretical support for the improvement and utilization of salinized soil.
文摘Bacterial populations isolated from treated soil,artificially contaminated with lead(Pb)and cadmium(Cd)and undergoing a phytoremediation process were studied to determine their potential application in soil remediation.The physicochemical parameters evaluated in the soil varied significantly.Ten bacterial strains were selected from each polluted soil to test tolerance and growth in contaminated media.The concentrations of heavy metals tested were 1,000 ppm for lead and 850 ppm for cadmium.These strains were morphologically identified through Gram staining.Four strains showing the most significant growth in both contaminants were then selected to verify their tolerance to different concentrations of heavy metals.The results demonstrated that the selected bacteria have high tolerance to Pb,resisting inhibition up to 2,000 ppm.In contrast,strains exposed to cadmium tended to slow their growth as the concentration increased.
文摘Urban landscape water body is not only an important part of urban landscape construction,but also an important way to maintain landscape diversity and biodiversity,carrying the beautiful yearning of urban residents for natural life.A good state of urban landscape water body is crucial to the ecological environment of the city.However,due to the poor kinetic energy of urban landscape water body and the influence of various human factors,the quality of urban landscape water body often declines,and urban population is threatened by water security problems.Through the study of several water body ecological remediation technologies,relevant suggestions are put forward,in order to provide a reference for water pollution restoration and treatment in urban human settlement environment.
基金funded by the National Natural Science Foundation of China(41907175)the Open Fund of Key Laboratory(WSRCR-2023-01)the project of the China Geological Survey(DD20230459).
文摘Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.
文摘This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition of goethite-modified biochar significantly enhanced the remediation efficiency of As(III),achieving a maximum removal rate of 100%.Conversely,pure biochar exhibited high efficiency in the removal of Hg(II),with a maximum removal rate approaching 100%.Furthermore,the pH level of the water significantly influenced the adsorption efficiency of heavy metal ions,with the optimal removal performance observed at a pH of 6.0.The PRB system demonstrated excellent removal rates under low concentrations of heavy metals.However,as the concentration increased,the remediation efficiency exhibited a slight decrease.In summary,the findings of this study provide compelling evidence for the use of modified biochar in the construction of PRBs for the remediation of mercury and arsenic-polluted water bodies.Furthermore,the study reveals the mechanism by which pH and heavy metal concentration influence remediation efficiency.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074055 and 62005036)Liaoning BaiQianWan Talents Program,Dalian Science Foundation for Distinguished Young Scholars(2018RJ05)+1 种基金the Natural Science Foundation of Liaoning Province(Grant No.2020-MZLH-15)the Program for Dalian Excellent Talents(Grant No.2020RQ131).
文摘Harvesting solar energy to drive the semiconductor photocatalysis offers a promising tactic to address ever-growing challenges of both energy shortage and environmental pollution.Design and synthesis of nano-heterostructure photocatalysts with controllable components and morphologies are the key factors for achieving highly efficient photocatalytic processes.Onedimensional(1D)semiconductor nanofibers produced by electrospinning possess a large ratio of length to diameter,high ratio of surface to volume,small grain sizes,and high porosity,which are ideally suited for photocatalytic reactions from the viewpoint of structure advantage.After the secondary treatment of these nanofibers through the solvothermal,gas reduction,in situ doping,or assembly methods,the multi-component nanofibers with hierarchical nano-heterostructures can be obtained to further enhance their light absorption and charge carrier separation during the photocatalytic processes.In recent years,the electrospun semiconductorbased nano-heterostructures have become a“hot topic”in the fields of photocatalytic energy conversion and environmental remediation.This review article summarizes the recent progress in electrospinning synthesis of various kinds of high-performance semiconductor-based nano-heterostructure photocatalysts for H2 production,CO_(2) reduction,and decomposition of pollutants.The future perspectives of these materials are also discussed.
基金the Open Project Program of Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure(Grants Nos.XTZX202108)the National Key Research and Development Program of China(Grants Nos.2019YFC1805300)。
文摘Nanoscale zero-valent iron particles(NZVI) produced by using green tea(GT) extract as a reductant can remove Cr(Ⅵ) from water effectively,which can be utilized in groundwater remediation.In order to define the reaction mechanism and removal effect in the aquifer,in this study,GT-NZVI particles were prepared and measured by some characterization methods to define their surface performance,and then batch and one-dimensional experiments were carried out to reveal the reaction properties of GT-NZVI and Cr(Ⅵ) in groundwater.The results showed that the prepared GT-NZVI particles were regular spherical with a diameter of 10-20 nm,which could disperse in water stably.The main component of GT-NZVI wasα-Fe with superficial polyphenols as a stabilizer.GT-NZVI suspension had good ability to reduce the Cr(Ⅵ) to Cr(Ⅲ) in water.When the concentration of GT-NZVI was 1 g/L,the removal efficiency of Cr(Ⅵ)with an initial concentration of 100 mg/L reached 92.8% in 1 h reaction.In column tests,GT-NZVI passed through the natural sand column successfully with an average outflow percentage of 71.2%.The simulated in-situ reaction zone(IRZ) with GT-NZVI was used to remediate Cr(Ⅵ) contaminated groundwater.The oufflow concentration of Cr(Ⅵ) kept in 0.14-0.32 mg/L corresponding to the outflow rate below 0.32%within 15 days,and the removal efficiency of Cr(Ⅵ) by IRZ with GT-NZVI decreased with the increase of aquifer medium particle size,groundwater flow rate and ionic strength.Most of Cr(Ⅲ) as reduzate was adsorbed or immobilized on the surface or in the lattice of GT-NZVI,which indicated effective immobilization for chromium.
基金Jiangsu University of Science and Technology for providing financial support under the Research start-up fund for the introduction of young talent at Jiangsu University of Science and Technology (Grant no. 1112932205)High-level Talents Program of Shihezi University (RCZK2021B25)。
文摘In this research study, we have synthesized the bio-capped ZnO/g-C_(3)N_(4) nanocomposites by employing lemon juice(Citrus limon) as a stabilizer and mediator. Fruitfully, lemon juice which contains various acidic functional groups and citric acid has the capability to block the surface of g-C_(3)N_(4) from chemical reactivity and activated the surface of g-C_(3)N_(4) for various reactions. Consequently, the agglomeration behavior and controlled shape of g-C_(3)N_(4) has also been achieved. Our experimental results i.e. XRD,TEM, HRTEM, PL, FS, XPS, and PEC have confirmed that the lemon juice mediated and green g-C_(3)N_(4)(L-CN) have good performances and remarkable visible light photocatalytic activities as compared to the chemically synthesized g-C_(3)N_(4)(CN). Furthermore, the small surface area and low charge separation of g-C_(3)N_(4) is upgraded by coupling with Zn O nanoparticles. It is proved that the coupling of Zn O worked as a facilitator and photoelectron modulator to enhance the charge separation of g-C_(3)N_(4). Compared to pristine lemon-mediated green g-C_(3)N_(4)(L-CN), the most active sample 5Zn O/L-CN showed ~ 5-fold improvement in activities for ciprofloxacin(CIP) and methylene blue(MB) degradation. More specifically,the mineralization process and degradation pathways, and the mineralization process of ciprofloxacin(CIP) and methylene blue(MB) are suggested. Finally, our present novel research work will provide new access to synthesize the eco-friendly and bio-caped green g-C_(3)N_(4)nanomaterials and their employment for pollutants degradation and environmental purification.
文摘The C-F bond is one of the strongest in organic chemistry. It is responsible for the great stability of perfluoroalkyl and polyfluoroalkyl substances, commonly referred to as “PFAS”, a group of man-made chemicals that include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). Thermal stability, surface activity, dielectric characteristics, chemical resistance, and inertness are just a few of the technical advantages that this group has over hydrocarbons, and since the 1950s, these chemicals have been largely utilized in a variety of domestic and industrial endeavors. The hydrophilic and lipophilic nature of this class of chemicals accounts for its uniqueness. Up until today, the chemistry and ecotoxicology of these chemicals continue to emerge. Issues concerning the destructive power of ignorance expedited by an ineffective regulatory institution continue to show that manufacturing chemicals are insufficient without giving serious thought to issues of openness and humanity’s awareness of its own safety. When discussing the nature of humanity and how it can be defined or redefined, it is important to allude to the significance of integrating business with ethics in its various forms. This paper highlights the importance of holding polluters accountable for PFAS contamination cleanup costs while emphasizing the need for chemical manufacturers to test and disclose the health and environmental effects of PFAS compounds. In addition, the sources, types, properties, applications, distribution, toxicological implications, regulations, and analytical methods associated with PFAS (per- and polyfluoroalkyl substances) are explored. The effectiveness of the remedial methods described in this paper needs to be progressively tested while exploring other sustainable approaches.
文摘Statistical comparison of two remediation methods: Remedial nutrient solution and enhanced natural attenuation were analyzed in terms of TPH of different soil samples collected from Khana Local Government Area of Rivers State, Nigeria at different locations and placed inside sample bottles labelled A to D and replicated into two, one for each of the above treatment technique. The TPH of the soil was determined using GC analyzer after solvent extraction was carried out using hexane/dichloromethane mixture. Three batches of treatment were performed on the samples at every interval of eight weeks for a duration of six months. The result obtained was analyzed using a two-way ANOVA factorial experimental design to test the significance of the various sources of variation. From the result obtained, source of variation for sample and interactions were non-significantly different from each other which means that irrespective of the number of samples analyzed or the combination of both samples and batches of treatment, they will still not be significantly different from each other. The source of variation for batch and replications were significantly different from each other and this means that irrespective of the batches of treatment applied or the number of replications (methods of treatment used), they will always be significantly different from each other. The individual comparison of each sample showed that the efficiency of the Remedial Nutrient Solution method was better than Enhanced Natural Attenuation method.
文摘The C-F bond is one of the strongest in organic chemistry. It is responsible for the great stability of perfluoroalkyl and polyfluoroalkyl substances, commonly referred to as “PFAS”, a group of man-made chemicals that include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). Thermal stability, surface activity, dielectric characteristics, chemical resistance, and inertness are just a few of the technical advantages that this group has over hydrocarbons, and since the 1950s, these chemicals have been largely utilized in a variety of domestic and industrial endeavors. The hydrophilic and lipophilic nature of this class of chemicals accounts for its uniqueness. Up until today, the chemistry and ecotoxicology of these chemicals continue to emerge. Issues concerning the destructive power of ignorance expedited by an ineffective regulatory institution continue to show that manufacturing chemicals are insufficient without giving serious thought to issues of openness and humanity’s awareness of its own safety. When discussing the nature of humanity and how it can be defined or redefined, it is important to allude to the significance of integrating business with ethics in its various forms. This paper highlights the importance of holding polluters accountable for PFAS contamination cleanup costs while emphasizing the need for chemical manufacturers to test and disclose the health and environmental effects of PFAS compounds. In addition, the sources, types, properties, applications, distribution, toxicological implications, regulations, and analytical methods associated with PFAS (per- and polyfluoroalkyl substances) are explored. The effectiveness of the remedial methods described in this paper needs to be progressively tested while exploring other sustainable approaches.
文摘Traditional medicine(TM)has played an essential part in maternity services around the world,which has led to increased utilization among pregnant women.Herbs,herbal preparations,and completed herbal products are examples of TMs that contain active substances such as plant parts or other plant components that are thought to have therapeutic advantages.This study review aimed to identify the herbs commonly used,reasons for use,and effect of use,to make adequate recommendations on herbal medicine use as a remedy for pregnancy and labor.Incorporating evidence from reviews,personal correspondence,and diaries,this study demonstrates that about 80%of people used TM such as herbal remedies for sickness diagnosis,prevention,treatment,and promotion of general well‑being.Due to its accessibility,cost,and availability,TM is usually used by expectant mothers.Examples of TM used in pregnancy and labor include honey,aloe,raspberry,jute mallow,and hibiscus leaves.It is important to note that its use in pregnancy and labor can be beneficial or harmful to both mother and child.Lack of standardization,financial risk,lack of safety,and effectiveness are challenges to TM.There is a need of creating awareness of the safe use and effects of TM in pregnancy and labor through the provision of health education programs for women in the community.
文摘Phytoremediation is a viable,effective,and economically attractive technology that uses plants to remove chemical contaminants from soil and groundwater.A major munitions contaminant,TNT(2,4,6-Trinitrotoluene)can be remediated by several plants such as Myriophyllum aquaticum(Parrot Feather),and Catharanthus roseus.This study focuses on screening plants that have natural antioxidant phytochemicals for their ability to remediate TNT,and heavy metals from contaminated water sources,groundwater and soil.Three kinds of bell peppers,Capsicum frutescens(green,red,and yellow),which contain both the antioxidant phytochemicals(carotene and vitamin C)and tomato,which also contains vitamin C,were tested to confirm their antioxidizing and remediation abilities respectively.Results for remediation abilities were analyzed by HPLC(High Performance Liquid Chromatography).Results also suggested that plants which had antioxidant properties were also able to remediate TNT and heavy metals effectively,thereby suggesting a possible correlation between antioxidant and phytoremediation abilities of the plants studied.
文摘[Objectives]To prepare biomanganese oxide/biochar composite(BMO-BC)and examine its remediation performance on arsenic contamination.[Methods]The BMO-BC was prepared by cultivating Pseudomonas putida MnB1 in the presence of Mn 2+and biochar.[Results]The initial concentration of Mn 2+in the culture system had no significant effect on the growth rate and domestication cycle of Pseudomonas putida MnB1.The results of SEM-EDS and XRD analysis confirm that the adsorbent prepared in this experiment was a composite of biomanganese oxide and biochar particles.The results of arsenic pollution removal test in simulated environment showed that the in-situ formed BMO-BC composite had certain removal effect on As(III)and the presence of biochar particles and manganese dioxide in the reaction system and the manganese oxidation ability of microbial strain MnB1 affect its remediation performance to As(III).[Conclusions]When the initial concentration is in the range of 0-10.0 mg/L,the isothermal adsorption data of BMO-BC on As(III)conforms to the Langmuir model.
基金Supported by the Beijing-Tianjin-Hebei Collaborative Innovation Community Construction Project (19244010D)Technology Model and Application of Biological Obstacle Reduction and Healthy Soil Cultivation in Wheat and Corn Cropping Area of North China (2022YFD1901300)+1 种基金the National Key R&D Program of China (2016YFD0801003)the Talent Training Project in Hebei Province (A201803030)。
文摘Based on the literature and experimental results, three kinds of soil amendments, namely rice biochar, hydroxyapatite and potassium dihydrogen phosphate(KH2PO4), and deeper ploughing were selected to evaluate the field application effect of soil amendments and agronomic measures on the remediation of Cd contamination in greenhouse vegetable fields. Cd-contaminated greenhouse screening was conducted from 2015 to 2017. In September 2017, comparative tests of eight treatments were performed, and a preferred test was performed in September 2018. The screening results of the contaminated areas indicated that the distribution of over-standard sites was uneven, and Cd content was significantly different. Over-standard rate of No.4 greenhouse was 83.33% and was the highest, and the average content of Cd in soil was 0.535 mg/kg. It was used as a comparative test greenhouse for eight treatments. No.1 greenhouse was selected as the preferred test greenhouse, with three over-standard plots having average Cd concentrations of 0.530, 0.568 and 0.792 mg/kg. The comparative test results showed that after 8 months of remediation, the content of available Cd in the treatment of hydroxyapatite+rice biochar+deeper ploughing(T6) was reduced by 32.55% compared with CK(the control) and 24.96% than 2 months of remediation. The content of available Cd using the treatment of potassium dihydrogen phosphate+rice biochar+deeper ploughing(T7) decreased by 47.88% compared with CK and 31.00% than 2 months of remediation. The preferred remediation test results showed that in the treatment of hydroxyapatite+rice biochar+deeper ploughing: the mean Cd content decreased from 0.489 to 0.372 mg/kg, reducing by 23.86%, and the mean did not exceed the standard. Compared with CK, the mean content of available Cd decreased by 10.71% after 8 months, and the lowest content of available Cd in three treatments was 0.133 mg/kg. In addition, the Cd content, bioconcentration factor(BCF) and translocation coefficient(TF) of bean aboveground plants were decreased by 15.86%, 23.68% and 25.77%, respectively when compared with CK. Rice biochar+hydroxyapatite +deeper ploughing is a favoured technology for the remediation of Cd-contaminated greenhouse vegetable fields.
文摘Indigenous peoples are the custodians of traditional knowledge,encompassing their ideas,innovations,and methods.Throughout history,both plants and animals have served as valuable sources for medicinal remedies,capable of treating or preventing illnesses.This article aims to offer a concise overview of the traditional medical uses of vertebrates and the derived products in both human and veterinary medicine.Animal species are utilized as raw materials,and the resulting products are employed to cure a wide array of ailments.In different regions of India,indigenous peoples have diverse traditional applications for vertebrates and their by-products,which are utilized to treat human and animal illnesses.In various parts of India,medical practices involve the use of forty percent mammals,seven percent birds,eleven percent reptiles,eight percent fish,and two percent amphibians.Kerala employs around 69 different animal species and their by-products for the treatment of human and veterinary ailments.Similarly,the Theni district of Tamil Nadu utilizes 69 animals,the state of Madhya Pradesh employs 18 animals,the state of Tripura utilizes 25 animals,and the state of Assam employs 44 animals for the treatment of human and veterinary illnesses.Consequently,the main objective of this review is to provide a summary of the traditional therapeutic applications of animals and the resulting products.