Killer cell immunoglobulin-like receptors (KIRs) which are mainly expressed on natural killer (NK) cells are implicated in many virus infections. However, it is unclear whether or not KIRs are associated with susc...Killer cell immunoglobulin-like receptors (KIRs) which are mainly expressed on natural killer (NK) cells are implicated in many virus infections. However, it is unclear whether or not KIRs are associated with susceptibility to Epstein-Barr virus (EBV) infection related diseases. Therefore, the purpose of our study was to investigate possible correlation between polymorphisms of KIR genes and infectious mononucleosis (IM)/EBV-associated hemophagocytic Iymphohistiocytosis (EBV-HLH). The polymorphisms of KIR genes were detected by polymerase chain reaction with sequence-specific primers (PCR-SSP). The results would contribute to clarify the association of KIRs with EBV induced diseases, and provide new insights into the role of NK cells and innate immune response against viral infections and/or subsequent progression.展开更多
Malaria is one of the deadliest infectious diseases in the world. Immune responses to Plasmodium falciparum malaria vary among individuals and between populations. Human genetic variation in immune system genes is lik...Malaria is one of the deadliest infectious diseases in the world. Immune responses to Plasmodium falciparum malaria vary among individuals and between populations. Human genetic variation in immune system genes is likely to play a role in this heterogeneity. Natural killer (NK) cells produce inflammatory cytokines in response to malaria infection, kill intraerythrocytic Plasmodium falciparum parasites by cytolysis, and participate in the initiation and development of adaptive immune responses to plasmodial infection. These functions are modulated by interactions between killer-cell immunoglobulin-like receptors (KIRs) and human leukocyte antigens (HLAs). Therefore, variations in KIR and HLA genes can have a direct impact on NK cell functions. Understanding the role of KIRs and HLAs in immunity to malaria can help to better characterize antimalarial immune responses. In this review, we summarize the different KIRs and HLAs associated with immunity to malaria thus far.展开更多
<p style="text-align:justify;"> <span>Following organ transplantation</span><span>,</span><span> the outcome of the encounter between an APC and a T lymphocyte is str...<p style="text-align:justify;"> <span>Following organ transplantation</span><span>,</span><span> the outcome of the encounter between an APC and a T lymphocyte is strongly dependent on the presence of costimulatory and co-inhibitory molecules, the former associated with allograft rejection and the latter with allograft acceptance. We evaluated the expression of PD-L2, GITR, ILT-2/3/5, and ILT-4 on graft-infiltrating cells procured by Fnab from human KTx under different immunosuppressive regimens. Methods: Fnab biopsies were performed on days 7 or 14</span><span> </span><span>-</span><span> </span><span>30 in stable KTx and on the day of acute rejection diagnosis. Cytopreparations were studied by the enzymatic avidin biotin complex staining. Results: Acute rejection group </span><span>showed a significant down-regulated expression of PD-L2, GITR, and ILT-2/3/5 </span><span>as compared to stable group, while for ILT-4 we did not find significant difference. Anti-IL2</span><i><span>α</span></i><span>R and rapamicyn treatment trend to down-regulate ILT-4 expression, although meaningless. A significant</span><span>ly</span><span> positive correlation was observed between PD-L2 and GITR expression in Fnab. The PPV for acute rejection diagnosis for both PD-L2 and GITR w</span><span>as</span><span> clearly above 0.8. Conclusions: Our findings point to an early entrance of cells expressing PD-L2, GITR and ILT-2/3/5 inside human KTx who are going to remain rejection-free. Both PD-L2 and GITR shared a high ability to rule-in and rule-out acute rejection.</span> </p>展开更多
AIM:To explore whether predisposition to autoimmune gastritis (AIG) is found in human leukocyte antigen (HLA), cytokine or killer cell immunoglobulin-like receptor (KIR) gene variations.METHODS: Twelve Finnish patient...AIM:To explore whether predisposition to autoimmune gastritis (AIG) is found in human leukocyte antigen (HLA), cytokine or killer cell immunoglobulin-like receptor (KIR) gene variations.METHODS: Twelve Finnish patients with autoimmunetype severe atrophy of the gastric corpus were included. The patients' serum was analyzed for pepsinogen-interleukin (IL)-1 gene cluster, IL-2, IL-4, IL-6, IL-10, IL-12, interferon γ, transforming growth factor β, and tumor necrosis factor α. Variation in KIR genes was also explored. The results were compared with prevalence of the polymorphisms in Finnish or European populations.RESULTS: All patients had pepsinogen-CONCLUSION: As explored with modern DNA-based methods, HLA-DRB1*04 and DQB1*03 alleles, but not HLA-B8-DRB1*03, may predispose to AIG.展开更多
The successful of transplantation is determined by the shared human leukocyte antigens(HLAs) and ABO blood group antigens between donor and recipient. In recent years, killer cell receptor [i.e., killer cell immunoglo...The successful of transplantation is determined by the shared human leukocyte antigens(HLAs) and ABO blood group antigens between donor and recipient. In recent years, killer cell receptor [i.e., killer cell immunoglobulinlike receptor(KIR)] and major histocompatibility complex(MHC) class I chain-related gene molecule(i.e., MICA) were also reported as important determinants of transplant compatibility. At present, several different genotyping techniques(e.g., sequence specific primer and sequence based typing) can be used to characterize blood group, HLA, MICA and KIR and loci. These molecular techniques have several advantages because they do not depend on the availability of anti-sera, cellular expression and have greater specificity and accuracy compared with the antibody-antigen based typing. Nonetheless, these molecular techniques have limited capability to capture increasing number of markers which have been demonstrated to determine donor and recipient compatibility. It is now possible to genotype multiple markers and to the extent of a complete sequencing of the human genome using next generation sequencer(NGS). This high throughput genotyping platform has been tested for HLA, and it is expected that NGS will be used to simultaneously genotype a large number of clinically relevant transplantation genes in near future. This is not far from reality due to the bioinformatics support given by the immunogenetics community and the rigorous improvement in NGS methodology. In addition, new developments in immune tolerance based therapy, donor recruitment strategies and bioengineering are expected to provide significant advances in the field of transplantation medicine.展开更多
基金supported by grants from Chengdu Scientific and Technologic Bureau(No.11DXYB086JH-027)the research funds from the University Program for Changjiang Scholars and Innovative-Research Team(No.IRT0935)
文摘Killer cell immunoglobulin-like receptors (KIRs) which are mainly expressed on natural killer (NK) cells are implicated in many virus infections. However, it is unclear whether or not KIRs are associated with susceptibility to Epstein-Barr virus (EBV) infection related diseases. Therefore, the purpose of our study was to investigate possible correlation between polymorphisms of KIR genes and infectious mononucleosis (IM)/EBV-associated hemophagocytic Iymphohistiocytosis (EBV-HLH). The polymorphisms of KIR genes were detected by polymerase chain reaction with sequence-specific primers (PCR-SSP). The results would contribute to clarify the association of KIRs with EBV induced diseases, and provide new insights into the role of NK cells and innate immune response against viral infections and/or subsequent progression.
基金This work was supported through the DELTAS Africa Initiative(Grant no.107743),which funded S.T.through a PhD fellowship award and A.N.through a group leader award.The DELTAS Africa Initiative is an independent funding scheme of the African Academy of Science(AAS)and the Alliance for Accelerating Excellence in Science in Africa and is supported by the New Partnership for Africa’s Development Planning and Coordinating Agency(NEPAD Agency)with funding from the Wellcome Trust(Grant no.107743)and the UK governmentF.C.is funded by Wellcome Trust grant 200841/Z/16/Z.The project received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program(grant agreement No.695551)for J.Traherne and J.Trowsdale.
文摘Malaria is one of the deadliest infectious diseases in the world. Immune responses to Plasmodium falciparum malaria vary among individuals and between populations. Human genetic variation in immune system genes is likely to play a role in this heterogeneity. Natural killer (NK) cells produce inflammatory cytokines in response to malaria infection, kill intraerythrocytic Plasmodium falciparum parasites by cytolysis, and participate in the initiation and development of adaptive immune responses to plasmodial infection. These functions are modulated by interactions between killer-cell immunoglobulin-like receptors (KIRs) and human leukocyte antigens (HLAs). Therefore, variations in KIR and HLA genes can have a direct impact on NK cell functions. Understanding the role of KIRs and HLAs in immunity to malaria can help to better characterize antimalarial immune responses. In this review, we summarize the different KIRs and HLAs associated with immunity to malaria thus far.
文摘<p style="text-align:justify;"> <span>Following organ transplantation</span><span>,</span><span> the outcome of the encounter between an APC and a T lymphocyte is strongly dependent on the presence of costimulatory and co-inhibitory molecules, the former associated with allograft rejection and the latter with allograft acceptance. We evaluated the expression of PD-L2, GITR, ILT-2/3/5, and ILT-4 on graft-infiltrating cells procured by Fnab from human KTx under different immunosuppressive regimens. Methods: Fnab biopsies were performed on days 7 or 14</span><span> </span><span>-</span><span> </span><span>30 in stable KTx and on the day of acute rejection diagnosis. Cytopreparations were studied by the enzymatic avidin biotin complex staining. Results: Acute rejection group </span><span>showed a significant down-regulated expression of PD-L2, GITR, and ILT-2/3/5 </span><span>as compared to stable group, while for ILT-4 we did not find significant difference. Anti-IL2</span><i><span>α</span></i><span>R and rapamicyn treatment trend to down-regulate ILT-4 expression, although meaningless. A significant</span><span>ly</span><span> positive correlation was observed between PD-L2 and GITR expression in Fnab. The PPV for acute rejection diagnosis for both PD-L2 and GITR w</span><span>as</span><span> clearly above 0.8. Conclusions: Our findings point to an early entrance of cells expressing PD-L2, GITR and ILT-2/3/5 inside human KTx who are going to remain rejection-free. Both PD-L2 and GITR shared a high ability to rule-in and rule-out acute rejection.</span> </p>
基金Supported by A grant from the Research Unit of the Health Centre,City of Helsinki
文摘AIM:To explore whether predisposition to autoimmune gastritis (AIG) is found in human leukocyte antigen (HLA), cytokine or killer cell immunoglobulin-like receptor (KIR) gene variations.METHODS: Twelve Finnish patients with autoimmunetype severe atrophy of the gastric corpus were included. The patients' serum was analyzed for pepsinogen-interleukin (IL)-1 gene cluster, IL-2, IL-4, IL-6, IL-10, IL-12, interferon γ, transforming growth factor β, and tumor necrosis factor α. Variation in KIR genes was also explored. The results were compared with prevalence of the polymorphisms in Finnish or European populations.RESULTS: All patients had pepsinogen-CONCLUSION: As explored with modern DNA-based methods, HLA-DRB1*04 and DQB1*03 alleles, but not HLA-B8-DRB1*03, may predispose to AIG.
文摘The successful of transplantation is determined by the shared human leukocyte antigens(HLAs) and ABO blood group antigens between donor and recipient. In recent years, killer cell receptor [i.e., killer cell immunoglobulinlike receptor(KIR)] and major histocompatibility complex(MHC) class I chain-related gene molecule(i.e., MICA) were also reported as important determinants of transplant compatibility. At present, several different genotyping techniques(e.g., sequence specific primer and sequence based typing) can be used to characterize blood group, HLA, MICA and KIR and loci. These molecular techniques have several advantages because they do not depend on the availability of anti-sera, cellular expression and have greater specificity and accuracy compared with the antibody-antigen based typing. Nonetheless, these molecular techniques have limited capability to capture increasing number of markers which have been demonstrated to determine donor and recipient compatibility. It is now possible to genotype multiple markers and to the extent of a complete sequencing of the human genome using next generation sequencer(NGS). This high throughput genotyping platform has been tested for HLA, and it is expected that NGS will be used to simultaneously genotype a large number of clinically relevant transplantation genes in near future. This is not far from reality due to the bioinformatics support given by the immunogenetics community and the rigorous improvement in NGS methodology. In addition, new developments in immune tolerance based therapy, donor recruitment strategies and bioengineering are expected to provide significant advances in the field of transplantation medicine.