Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for...Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for online control.Establishment of kiln process control expert system was presented,with maximum temperature of pellet and gas temperature at the feed end as control cores,and interval estimate as control strategy.Software was developed and put into application in a pellet plant.The results show that control guidance of this system is accurate and effective.After production application for nearly one year,the compressive strength and first grade rate of pellet are increased by 86 N and 2.54%,respectively,while FeO content is 0.05% lowered.This system can reveal detailed information of real time kiln process,and provide a powerful tool for online control of pellet production.展开更多
Kiln phosphoric acid(KPA)technology could produce P2O5 with high purity and has been applied in thermal phosphoric acid industry;however the formation of fouling in the high-temperature rotary kiln restricts the stabl...Kiln phosphoric acid(KPA)technology could produce P2O5 with high purity and has been applied in thermal phosphoric acid industry;however the formation of fouling in the high-temperature rotary kiln restricts the stable and long-term operation.In this paper,the reaction of phosphate ores with gaseous P2O5 was investigated in a high-temperature reactor,and the Ca O-SiO2-P2O5 ternary phase diagram was analyzed to understand the fouling formation mechanism.The results showed that the low-melting-point products,such as Ca(PO3)2and Ca2P2O7,are responsible for the fouling in the KPA process.In addition,a small amount of impurities,e.g.,aluminum and iron,could facilitate the generation of the low-melting-point products and cause serious fouling.Based on the high-temperature SiO2-P2O5 and CaO-SiO2-P2O5 phase diagram analysis,the control of Si/Ca molar ratio(e.g.,Si/Ca=2.0)was found to avoid fouling formation in the kiln.These results could provide the operation parameters of reaction temperature and feeds composition to suppress the fouling in the kiln reactor for the phosphoric acid production in industry.展开更多
As industrialization accelerates and the amount of hazardous waste generated gradually increases,the means of disposal of hazardous waste is of increasing concern.In this paper,a 40 t/d counter-fow rotary kiln inciner...As industrialization accelerates and the amount of hazardous waste generated gradually increases,the means of disposal of hazardous waste is of increasing concern.In this paper,a 40 t/d counter-fow rotary kiln incineration system owned by a Jiangsu environmental protection company was researched.The software Aspen Plus was used to build the mixed pyrolysis model and the software Fluent was used to build the computational fuid dynamics model of the incineration system.The infuence of the calorifc value of the hazardous waste,the operating temperature and the air supply on the operational efectiveness of the incineration system were analyzed by varying the simulation conditions.The results show that the SO_(x)and NO_(x)content of the product is lower when the operating temperature is above 800℃.The incineration system could only operate above 800℃when the calorifc value of the hazardous waste is not less than 1500 kcal/kg.The incineration system operated best at a primary air velocity of 1.5 m/s.The simulation results in this paper serve as a guide for the operation of counter-fow rotary kiln incineration systems.展开更多
Based on the TK7 high-temperature tunnel kiln computer control system, this article describes the control line system, the automatic loop control which has been realized in firing zone temperature, inner and bottom pr...Based on the TK7 high-temperature tunnel kiln computer control system, this article describes the control line system, the automatic loop control which has been realized in firing zone temperature, inner and bottom pressure and flow, and logic control of kiln doors and pusher, etc. In addition, this system integrates the product information management system of magnesite brick and efficiently ensures the important process parameters. During three months performance of the control system, all parameters and energy consumption have turned out a good result.展开更多
This paper summarizes the current situation of China’s industrial hazardous waste treatment,the disposal technology and the characteristics of rotary kiln incineration system,analyzes the refractory lining design of ...This paper summarizes the current situation of China’s industrial hazardous waste treatment,the disposal technology and the characteristics of rotary kiln incineration system,analyzes the refractory lining design of rotary kiln incineration system in China,and puts forward optimization suggestions according to the process characteristics.展开更多
In order to improve the management and control requirements of small electric kilns in ceramic production field.According to the excessive dispersion of electric kilns in porcelain production field,a remote monitoring...In order to improve the management and control requirements of small electric kilns in ceramic production field.According to the excessive dispersion of electric kilns in porcelain production field,a remote monitoring system based on RS485 bus and Modbus protocol is designed.The system consists of data acquisition,field control,cloud monitoring and communication protocol.MCGS is used as the master station to communicate with the temperature controller,collect and transmit the internal data to Siemens PLC.Through the communication between Siemens PLC and IOT gateway,the kiln working data is uploaded to the cloud platform to realize the remote monitoring for ceramic electric kiln.The experimental results showed this system can accurately collect the working temperature and parameters of the kiln in real time,and can remotely cortrol the kiln.展开更多
In order to overcome the defects of the existing technology that the detection of ceramic electric kiln faults takes a long time and costs a lot,an electric kiln control and fault detection device was designed.The wor...In order to overcome the defects of the existing technology that the detection of ceramic electric kiln faults takes a long time and costs a lot,an electric kiln control and fault detection device was designed.The working process of the device includes detection module,control module,start⁃stop module and switch module.The detection module detects the resistance circuit and sends a fault signal to the control module.The control module generates stop signal and fault information according to the fault signal,and starts the electric kiln when the fault signal is not received within the preset time.The start⁃stop module can monitor the internal temperature of the electric kiln and control the closing status of the switch module.The switch module is used to control the connection status of AC power and each resistance circuit in the kiln.Based on the 5G DTU or 5G module,the control module could send the information to mobile terminal under the ultra⁃reliable and low⁃latency communication(uRLLC)technical characteristics of 5G communication.展开更多
Successfully developed an innovative process of direct reduction of cold bound pellets from iron ore concentrate with a coal based rotary kiln, in comparison with the traditional direct reduction of fired oxide pellet...Successfully developed an innovative process of direct reduction of cold bound pellets from iron ore concentrate with a coal based rotary kiln, in comparison with the traditional direct reduction of fired oxide pellets in coal based rotary kilns , possesses such advantages as: shorter flowsheet, lower capital investment, greater economic profit, good quality of direct reduced iron. The key technologies , such as the composite binder and corresponding feasible techniques were employed in practice. A mill utilizing this process and with an annual capacity of 50 thousand ton DRI has been put into operation.展开更多
Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificia...Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificial neural network(ANN) and the support vector machine(SVM) respectively. And the recognition experiments were carried out by using flame image data sampled from an alumina rotary kiln to evaluate their effectiveness. The results show that the two recognition methods can achieve good results, which verify the effectiveness of the shape descriptor. The highest recognition rate is 88.83% for SVM and 87.38% for ANN, which means that the performance of the SVM is better than that of the ANN.展开更多
A 3-D numerical simulation with CFX software on physical field of multi-air channel coal burner in rotary kiln was carried out. The effects of various operational and structural parameters on flame feature and tempera...A 3-D numerical simulation with CFX software on physical field of multi-air channel coal burner in rotary kiln was carried out. The effects of various operational and structural parameters on flame feature and temperature distribution were investigated. A thermal measurement was conducted on a rotary kiln (4.5m in diameter, 90m in length) with four-air channel coal burner to determine the boundary conditions and to verify the simulation results. The calculation result shows that the distribution of velocity near burner exit is saddle-like; recirculation zones near nozzle and wall are useful for mixture primary air with coal and high temperature fume. A little central airflow can avoid coal backing up and cool nozzle. Adjusting the ratio of internal airflow to outer airflow is an effective and major means to regulate flame and temperature distribution in sintering region. Large whirlcone angle can intensify disturbution range at flame root to accelerate ignition and mixture. Large coal size can reduce high temperature region and result in coal combusting insufficiently. Too much combustion air will lengthen flame and increase heat loss.展开更多
It is taken as a novel prospective process to treat iron concentrate from hydrometallurgical zinc kiln slag forcomprehensive utilization of valuable metals by a hydrochloric acid leaching-spray pyrolysis method.The le...It is taken as a novel prospective process to treat iron concentrate from hydrometallurgical zinc kiln slag forcomprehensive utilization of valuable metals by a hydrochloric acid leaching-spray pyrolysis method.The leaching mechanism ofdifferent valuable metals was studied.The results revealed that the leaching rates of Ag,Pb,Cu,Fe,As and Zn were99.91%,99.25%,95.12%,90.15%,87.58%and58.15%,respectively with6mol/L HCl and L/S ratio of10:1at60°C for120min.The actionof SiO2in leaching solution was also studied.The results showed that the precipitation and settlement of SiO2(amorphous)adsorbedpart of metal ions in solution,which greatly inhibited the leaching of Cu,Fe,As and Zn,so it is crucial to control the precipitation ofamorphous SiO2.展开更多
Destruction of industrial waste in cement rotary kilns (CRKs) is an alternative technology for the treatment of certain types of industrial waste (IW). In this paper, three typical types of industrial wastes were co-i...Destruction of industrial waste in cement rotary kilns (CRKs) is an alternative technology for the treatment of certain types of industrial waste (IW). In this paper, three typical types of industrial wastes were co-incinerated in the CRK at Beijing Cement Plant to determine the effects of waste disposal (especially solid waste disposal) on the quality of clinker and the concentration of pollutants in air emission. Experimental results show that (1) waste disposal does not affect the quality of clinker and fly ash, and fly ash after the IW disposal can still be used in the cement production, (2) heavy metals from IW are immobilized and stabilized in the clinker and cement, and (3) concentration of pollutants in air emission is far below than the permitted values in the China National Standard-Air Pollutants Emission Standard (GB 16297-1996).展开更多
High-efficiency recovery of Zn and Pb from silicon-rich zinc leaching residues is realized in a rotary kiln.Characterizations by means of XRD,SEM,EDS and ICP reveal that the leaching residue contains 12.4 wt.%SiO_(2),...High-efficiency recovery of Zn and Pb from silicon-rich zinc leaching residues is realized in a rotary kiln.Characterizations by means of XRD,SEM,EDS and ICP reveal that the leaching residue contains 12.4 wt.%SiO_(2),16.1 wt.%Zn,and 7.4 wt.%Pb.Thermodynamic analysis shows that metallic vapor of Zn and Pb can be easily generated from the zinc leaching residue at 1150-1250°C inside the rotary kiln.Viscosities and melting points of 13 slag compositions were analyzed and three slag compositions(47wt.%SiO_(2)-23wt.%CaO-30wt.%FeO,40wt.%SiO_(2)-28wt.%CaO-32wt.%FeO,and 40wt.%SiO_(2)-30wt.%CaO-30wt.%FeO)possessed the desirable physical properties,with the melting point and viscosity in the range of 1150-1280°C and 0.2-0.5 Pa·s,respectively.The industrial tests show that adopting the optimized slag composition can contribute to very high recovery rates of Zn and Pb(97.3%for Zn and 94.5%for Pb),corresponding to slags with very low average contents of Zn and Pb(0.51 wt.%Zn and 0.45 wt.%Pb).The National-Standard leaching tests of the water-quenched slags result in 1.82 mg/L Zn,~0.01 mg/L Cu,0.0004 mg/L As,~0.01 mg/L Cd,0.08 mg/L Pb,and~0.02 mg/L Hg in the leachate,verifying the detoxification of the zinc leaching residue at the same time.展开更多
Cement raw meal with MSS and different heavy metals was blended to examine the fixation ratios, chemical species, and cement crystalline phases in clinkers. The results showed that blending MSS could decrease the fixa...Cement raw meal with MSS and different heavy metals was blended to examine the fixation ratios, chemical species, and cement crystalline phases in clinkers. The results showed that blending MSS could decrease the fixation ratio of Cr, Ni, Cu, and Zn in the produced clinker by 5% to 25%. And Cr, Cu, and Zn were mainly incorporated into clinkers as metal silicates, Ni was mainly solubilized in Mg O to form magnesium nickel oxides, and the transition phases were mainly metal aluminum oxides as indicated by X-ray diffraction. The reduction of fixation ratios was likely attributed to the presence of impure elements, such as sodium and phosphorus in MSS. In addition, high concentrations(eg, 1.7 wt%) of chlorine in MSS led to metal chloride formation that could vaporize Cu, Cr, Ni, and Zn. To summarize, introducing MSS would decrease the fixation ratios of heavy metals due to the presence of impure elements, such as sodium and phosphorus and chlorine.展开更多
The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated ...The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated by discrete element method(DEM) in three dimensions under variant rotation speeds,filling degree,based on the background of induration process of iron ore pellets.The influences of the mentioned factors on the maximum thickness of the active layer and the average velocity of particles have been investigated.The average velocity of particles increases with Froude number following the power function over a wide range,and the maximum thickness rises with increasing rotation speed in a way of logarithm.The influence of the filling degree f on the maximum thickness exhibits a good linearity under two classic regimes,but the increasing of the average velocity of the active layer is limited at f=0.4.This basic research highlights the impact of the active layer within rotary kilns,and lays a good foundation for the further investigation in mixing and heat transfer within the particle bed inside rotary kilns.展开更多
The properties of SiC kiln furniture bonded with fine silicon powderare related to the bonder’s crystal structure. At high temperature, it will crystallize ina-cristobalite with great bulk effect. MnO2 mineralizer ca...The properties of SiC kiln furniture bonded with fine silicon powderare related to the bonder’s crystal structure. At high temperature, it will crystallize ina-cristobalite with great bulk effect. MnO2 mineralizer can make a-cristobalite convertto a-tridymite whose bulk effect is small. The crystal structure and its amount were investigated with XRD technique. The influence of different amounts of MnO2 on thecrystal structure and polycrystal transformation, and that of crystal structure on theproperties of kiln furniture were studied. The best proportion of MnO2 added was determined to be 2.0%.展开更多
A periodic check of the cement rotary kiln axis is needed withinthe framework of preventive ma- intenance for maintaining high plantavailability. The fourth generation 'KAS-4' measuring system wasdevel- oped b...A periodic check of the cement rotary kiln axis is needed withinthe framework of preventive ma- intenance for maintaining high plantavailability. The fourth generation 'KAS-4' measuring system wasdevel- oped by Wuhan University of Technology in 1999. The system canbe carried out with rotating or stationary kiln plant. The same istrue of the measurement of tire and supporting roller diameters, theclearance of tires, the po- sition of rollers, the machining of tiresand rollers, the slops of roller surfaces, the deflection of gear,the axis of kiln. The system has been applied to the measurement for10 set of cement rotary kiln in China.展开更多
Improvement of properties of weak soils in terms of strength,durability and cost is the key from engineering point of view.The weak soils could be stabilized using mechanical and/or chemical methods.Agents added durin...Improvement of properties of weak soils in terms of strength,durability and cost is the key from engineering point of view.The weak soils could be stabilized using mechanical and/or chemical methods.Agents added during chemical stabilization could improve the engineering properties of treated soils.Stabilizers utilized have to satisfy noticeable performance,durability,low price,and can be easily implemented.Since cement kiln dust(CKD) is industrial by-product,it would be a noble task if this waste material could be utilized for stabilization of sabkha soil.This study investigates the feasibility of utilizing CKD for improving the properties of sabkha soil.Soil samples are prepared with 2% cement and 10%,20% or 30% CKD and are tested to determine their unconfined compressive strength(UCS),soaked California bearing ratio(CBR) and durability.Mechanism of stabilization is studied utilizing advanced techniques,such as the scanning electron microscope(SEM),energy dispersive X-ray analysis(EDX),backscattered electron image(BEI) and X-ray diffraction analysis(XRD).It is noted that the sabkha soil mixed with 2% cement and 30% CKD could be used as a sub-base material in rigid pavements.The incorporation of CKD leads to technical and economic benefits.展开更多
In a rotary kiln process for phosphoric acid production,the reaction between gaseous phosphorus pentoxide(P2O5)and phosphate ore and silica contained in feed balls(the so-called P2O5"absorption")not only reduces...In a rotary kiln process for phosphoric acid production,the reaction between gaseous phosphorus pentoxide(P2O5)and phosphate ore and silica contained in feed balls(the so-called P2O5"absorption")not only reduces phosphorous recovery but also generates a large amount of low melting-point side products.The products may give rise to formation of kiln ring,which interferes with kiln operation performance.In this study,the reactions of gaseous P2O5with solid calcium phosphate(Ca3(PO4)2),silica(SiO2)and their mixture,respectively,were investigated via combined chemical analysis and various characterizations comprised of X-ray diffraction(XRD),Fourier-transform infrared(FT-IR)spectroscopy,thermogravimetric analysis and differential scanning calorimeter(TG&DSC),and scanning electron microscopy and energy dispersive spectrometer(SEM&EDS).Attentions were focused on apparent morphology,phase transformation and thermal stability of the products of the P2O5"absorption"at different temperatures.The results show that the temperature significantly affected the"absorption".The reaction between pure Ca3(PO4)2 and P2O5 occurred at 500℃.Calcium metaphosphate(Ca(PO3)2)was the primary product at the temperatures≤900℃ with its melting point≤900℃ while calcium pyrophosphate(Ca2P2O7)was obtained over 1000℃,which has a melting point≤1200℃.The"absorption"by pure SiO2 started at 800℃ and the most significant reaction occurred at 1000℃ with formation of silicon pyrophosphate(SiP2O7)product of melting point≤1000℃.Using mixed Ca3(PO4)2and SiO2as raw material,the"absorption"by Ca3(PO4)2 was enhanced due to existence of silica.At 600–700℃,silica was inert to P2O5and thus formed a porous structure in the raw material,which accelerated diffusion of gaseous P2O5inside the mixture.At higher temperatures,the combined"absorption"by calcium phosphate and reaction between silicon dioxide and the"absorption"product calcium pyrophosphate,reinforced the"absorption"by the mixture.Besides,it was found that both Ca(PO3)2and SiP2O7were unstable at high temperatures and would decompose to Ca2P2O7and SiO2,respectively,at over 1000℃ and 1100℃ with the release of gaseous P2O5at the same time.展开更多
基金Project(NCET-05-0630) supported by Program for New Century Excellent Talents in University of China
文摘Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for online control.Establishment of kiln process control expert system was presented,with maximum temperature of pellet and gas temperature at the feed end as control cores,and interval estimate as control strategy.Software was developed and put into application in a pellet plant.The results show that control guidance of this system is accurate and effective.After production application for nearly one year,the compressive strength and first grade rate of pellet are increased by 86 N and 2.54%,respectively,while FeO content is 0.05% lowered.This system can reveal detailed information of real time kiln process,and provide a powerful tool for online control of pellet production.
基金support from the National Key R&D Program of China(2018YFC1900201)the Provincial Key R&D Program of Shanxi(201603D31212003)。
文摘Kiln phosphoric acid(KPA)technology could produce P2O5 with high purity and has been applied in thermal phosphoric acid industry;however the formation of fouling in the high-temperature rotary kiln restricts the stable and long-term operation.In this paper,the reaction of phosphate ores with gaseous P2O5 was investigated in a high-temperature reactor,and the Ca O-SiO2-P2O5 ternary phase diagram was analyzed to understand the fouling formation mechanism.The results showed that the low-melting-point products,such as Ca(PO3)2and Ca2P2O7,are responsible for the fouling in the KPA process.In addition,a small amount of impurities,e.g.,aluminum and iron,could facilitate the generation of the low-melting-point products and cause serious fouling.Based on the high-temperature SiO2-P2O5 and CaO-SiO2-P2O5 phase diagram analysis,the control of Si/Ca molar ratio(e.g.,Si/Ca=2.0)was found to avoid fouling formation in the kiln.These results could provide the operation parameters of reaction temperature and feeds composition to suppress the fouling in the kiln reactor for the phosphoric acid production in industry.
基金supported by the National Key R&D Program of China(No.2018YFC1902600)。
文摘As industrialization accelerates and the amount of hazardous waste generated gradually increases,the means of disposal of hazardous waste is of increasing concern.In this paper,a 40 t/d counter-fow rotary kiln incineration system owned by a Jiangsu environmental protection company was researched.The software Aspen Plus was used to build the mixed pyrolysis model and the software Fluent was used to build the computational fuid dynamics model of the incineration system.The infuence of the calorifc value of the hazardous waste,the operating temperature and the air supply on the operational efectiveness of the incineration system were analyzed by varying the simulation conditions.The results show that the SO_(x)and NO_(x)content of the product is lower when the operating temperature is above 800℃.The incineration system could only operate above 800℃when the calorifc value of the hazardous waste is not less than 1500 kcal/kg.The incineration system operated best at a primary air velocity of 1.5 m/s.The simulation results in this paper serve as a guide for the operation of counter-fow rotary kiln incineration systems.
文摘Based on the TK7 high-temperature tunnel kiln computer control system, this article describes the control line system, the automatic loop control which has been realized in firing zone temperature, inner and bottom pressure and flow, and logic control of kiln doors and pusher, etc. In addition, this system integrates the product information management system of magnesite brick and efficiently ensures the important process parameters. During three months performance of the control system, all parameters and energy consumption have turned out a good result.
文摘This paper summarizes the current situation of China’s industrial hazardous waste treatment,the disposal technology and the characteristics of rotary kiln incineration system,analyzes the refractory lining design of rotary kiln incineration system in China,and puts forward optimization suggestions according to the process characteristics.
基金This paper was supported by Jiangxi Province Key Research and Development Program(202003BBG73071)。
文摘In order to improve the management and control requirements of small electric kilns in ceramic production field.According to the excessive dispersion of electric kilns in porcelain production field,a remote monitoring system based on RS485 bus and Modbus protocol is designed.The system consists of data acquisition,field control,cloud monitoring and communication protocol.MCGS is used as the master station to communicate with the temperature controller,collect and transmit the internal data to Siemens PLC.Through the communication between Siemens PLC and IOT gateway,the kiln working data is uploaded to the cloud platform to realize the remote monitoring for ceramic electric kiln.The experimental results showed this system can accurately collect the working temperature and parameters of the kiln in real time,and can remotely cortrol the kiln.
文摘In order to overcome the defects of the existing technology that the detection of ceramic electric kiln faults takes a long time and costs a lot,an electric kiln control and fault detection device was designed.The working process of the device includes detection module,control module,start⁃stop module and switch module.The detection module detects the resistance circuit and sends a fault signal to the control module.The control module generates stop signal and fault information according to the fault signal,and starts the electric kiln when the fault signal is not received within the preset time.The start⁃stop module can monitor the internal temperature of the electric kiln and control the closing status of the switch module.The switch module is used to control the connection status of AC power and each resistance circuit in the kiln.Based on the 5G DTU or 5G module,the control module could send the information to mobile terminal under the ultra⁃reliable and low⁃latency communication(uRLLC)technical characteristics of 5G communication.
基金The Key Project of the 9th Five year Plan of Ministry of Science andTechnology!(No .960 40 2 0 2A)the Foundation for Unive
文摘Successfully developed an innovative process of direct reduction of cold bound pellets from iron ore concentrate with a coal based rotary kiln, in comparison with the traditional direct reduction of fired oxide pellets in coal based rotary kilns , possesses such advantages as: shorter flowsheet, lower capital investment, greater economic profit, good quality of direct reduced iron. The key technologies , such as the composite binder and corresponding feasible techniques were employed in practice. A mill utilizing this process and with an annual capacity of 50 thousand ton DRI has been put into operation.
基金Project(60634020) supported by the National Natural Science Foundation of China
文摘Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificial neural network(ANN) and the support vector machine(SVM) respectively. And the recognition experiments were carried out by using flame image data sampled from an alumina rotary kiln to evaluate their effectiveness. The results show that the two recognition methods can achieve good results, which verify the effectiveness of the shape descriptor. The highest recognition rate is 88.83% for SVM and 87.38% for ANN, which means that the performance of the SVM is better than that of the ANN.
文摘A 3-D numerical simulation with CFX software on physical field of multi-air channel coal burner in rotary kiln was carried out. The effects of various operational and structural parameters on flame feature and temperature distribution were investigated. A thermal measurement was conducted on a rotary kiln (4.5m in diameter, 90m in length) with four-air channel coal burner to determine the boundary conditions and to verify the simulation results. The calculation result shows that the distribution of velocity near burner exit is saddle-like; recirculation zones near nozzle and wall are useful for mixture primary air with coal and high temperature fume. A little central airflow can avoid coal backing up and cool nozzle. Adjusting the ratio of internal airflow to outer airflow is an effective and major means to regulate flame and temperature distribution in sintering region. Large whirlcone angle can intensify disturbution range at flame root to accelerate ignition and mixture. Large coal size can reduce high temperature region and result in coal combusting insufficiently. Too much combustion air will lengthen flame and increase heat loss.
基金Project(51404307)supported by the National Natural Science Foundation of ChinaProject(2014CB643400)supported by the National Basic Research Program of China
文摘It is taken as a novel prospective process to treat iron concentrate from hydrometallurgical zinc kiln slag forcomprehensive utilization of valuable metals by a hydrochloric acid leaching-spray pyrolysis method.The leaching mechanism ofdifferent valuable metals was studied.The results revealed that the leaching rates of Ag,Pb,Cu,Fe,As and Zn were99.91%,99.25%,95.12%,90.15%,87.58%and58.15%,respectively with6mol/L HCl and L/S ratio of10:1at60°C for120min.The actionof SiO2in leaching solution was also studied.The results showed that the precipitation and settlement of SiO2(amorphous)adsorbedpart of metal ions in solution,which greatly inhibited the leaching of Cu,Fe,As and Zn,so it is crucial to control the precipitation ofamorphous SiO2.
文摘Destruction of industrial waste in cement rotary kilns (CRKs) is an alternative technology for the treatment of certain types of industrial waste (IW). In this paper, three typical types of industrial wastes were co-incinerated in the CRK at Beijing Cement Plant to determine the effects of waste disposal (especially solid waste disposal) on the quality of clinker and the concentration of pollutants in air emission. Experimental results show that (1) waste disposal does not affect the quality of clinker and fly ash, and fly ash after the IW disposal can still be used in the cement production, (2) heavy metals from IW are immobilized and stabilized in the clinker and cement, and (3) concentration of pollutants in air emission is far below than the permitted values in the China National Standard-Air Pollutants Emission Standard (GB 16297-1996).
基金the funding support from the National Natural Science Foundation of China (Nos. 51804221, 51874101)the National Key R&D Program of China (No. 2019YFF0217102)the China Postdoctoral Science Foundation (Nos. 2018M642906, 2019T120684)
文摘High-efficiency recovery of Zn and Pb from silicon-rich zinc leaching residues is realized in a rotary kiln.Characterizations by means of XRD,SEM,EDS and ICP reveal that the leaching residue contains 12.4 wt.%SiO_(2),16.1 wt.%Zn,and 7.4 wt.%Pb.Thermodynamic analysis shows that metallic vapor of Zn and Pb can be easily generated from the zinc leaching residue at 1150-1250°C inside the rotary kiln.Viscosities and melting points of 13 slag compositions were analyzed and three slag compositions(47wt.%SiO_(2)-23wt.%CaO-30wt.%FeO,40wt.%SiO_(2)-28wt.%CaO-32wt.%FeO,and 40wt.%SiO_(2)-30wt.%CaO-30wt.%FeO)possessed the desirable physical properties,with the melting point and viscosity in the range of 1150-1280°C and 0.2-0.5 Pa·s,respectively.The industrial tests show that adopting the optimized slag composition can contribute to very high recovery rates of Zn and Pb(97.3%for Zn and 94.5%for Pb),corresponding to slags with very low average contents of Zn and Pb(0.51 wt.%Zn and 0.45 wt.%Pb).The National-Standard leaching tests of the water-quenched slags result in 1.82 mg/L Zn,~0.01 mg/L Cu,0.0004 mg/L As,~0.01 mg/L Cd,0.08 mg/L Pb,and~0.02 mg/L Hg in the leachate,verifying the detoxification of the zinc leaching residue at the same time.
基金the National Major Science and Technology Project of Water Pollution Control and Management,China(No.2010ZX07319-001-02)
文摘Cement raw meal with MSS and different heavy metals was blended to examine the fixation ratios, chemical species, and cement crystalline phases in clinkers. The results showed that blending MSS could decrease the fixation ratio of Cr, Ni, Cu, and Zn in the produced clinker by 5% to 25%. And Cr, Cu, and Zn were mainly incorporated into clinkers as metal silicates, Ni was mainly solubilized in Mg O to form magnesium nickel oxides, and the transition phases were mainly metal aluminum oxides as indicated by X-ray diffraction. The reduction of fixation ratios was likely attributed to the presence of impure elements, such as sodium and phosphorus in MSS. In addition, high concentrations(eg, 1.7 wt%) of chlorine in MSS led to metal chloride formation that could vaporize Cu, Cr, Ni, and Zn. To summarize, introducing MSS would decrease the fixation ratios of heavy metals due to the presence of impure elements, such as sodium and phosphorus and chlorine.
基金Project(FRF-AS-10-0058) supported by the Fundamental Research Funds for the Central Universities,China
文摘The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated by discrete element method(DEM) in three dimensions under variant rotation speeds,filling degree,based on the background of induration process of iron ore pellets.The influences of the mentioned factors on the maximum thickness of the active layer and the average velocity of particles have been investigated.The average velocity of particles increases with Froude number following the power function over a wide range,and the maximum thickness rises with increasing rotation speed in a way of logarithm.The influence of the filling degree f on the maximum thickness exhibits a good linearity under two classic regimes,but the increasing of the average velocity of the active layer is limited at f=0.4.This basic research highlights the impact of the active layer within rotary kilns,and lays a good foundation for the further investigation in mixing and heat transfer within the particle bed inside rotary kilns.
基金financially supported by the National Natural Science Foundation of China(No.51474161)the Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources
文摘The properties of SiC kiln furniture bonded with fine silicon powderare related to the bonder’s crystal structure. At high temperature, it will crystallize ina-cristobalite with great bulk effect. MnO2 mineralizer can make a-cristobalite convertto a-tridymite whose bulk effect is small. The crystal structure and its amount were investigated with XRD technique. The influence of different amounts of MnO2 on thecrystal structure and polycrystal transformation, and that of crystal structure on theproperties of kiln furniture were studied. The best proportion of MnO2 added was determined to be 2.0%.
基金Funded by Chinese Building Material Industry Science Foundation (No, 96J - 13) , Research of Measurement Engineering of the Rotary Kiln in Operation.
文摘A periodic check of the cement rotary kiln axis is needed withinthe framework of preventive ma- intenance for maintaining high plantavailability. The fourth generation 'KAS-4' measuring system wasdevel- oped by Wuhan University of Technology in 1999. The system canbe carried out with rotating or stationary kiln plant. The same istrue of the measurement of tire and supporting roller diameters, theclearance of tires, the po- sition of rollers, the machining of tiresand rollers, the slops of roller surfaces, the deflection of gear,the axis of kiln. The system has been applied to the measurement for10 set of cement rotary kiln in China.
文摘Improvement of properties of weak soils in terms of strength,durability and cost is the key from engineering point of view.The weak soils could be stabilized using mechanical and/or chemical methods.Agents added during chemical stabilization could improve the engineering properties of treated soils.Stabilizers utilized have to satisfy noticeable performance,durability,low price,and can be easily implemented.Since cement kiln dust(CKD) is industrial by-product,it would be a noble task if this waste material could be utilized for stabilization of sabkha soil.This study investigates the feasibility of utilizing CKD for improving the properties of sabkha soil.Soil samples are prepared with 2% cement and 10%,20% or 30% CKD and are tested to determine their unconfined compressive strength(UCS),soaked California bearing ratio(CBR) and durability.Mechanism of stabilization is studied utilizing advanced techniques,such as the scanning electron microscope(SEM),energy dispersive X-ray analysis(EDX),backscattered electron image(BEI) and X-ray diffraction analysis(XRD).It is noted that the sabkha soil mixed with 2% cement and 30% CKD could be used as a sub-base material in rigid pavements.The incorporation of CKD leads to technical and economic benefits.
基金Suported by the breeding programs of Sichuan University(SCU2015C002)
文摘In a rotary kiln process for phosphoric acid production,the reaction between gaseous phosphorus pentoxide(P2O5)and phosphate ore and silica contained in feed balls(the so-called P2O5"absorption")not only reduces phosphorous recovery but also generates a large amount of low melting-point side products.The products may give rise to formation of kiln ring,which interferes with kiln operation performance.In this study,the reactions of gaseous P2O5with solid calcium phosphate(Ca3(PO4)2),silica(SiO2)and their mixture,respectively,were investigated via combined chemical analysis and various characterizations comprised of X-ray diffraction(XRD),Fourier-transform infrared(FT-IR)spectroscopy,thermogravimetric analysis and differential scanning calorimeter(TG&DSC),and scanning electron microscopy and energy dispersive spectrometer(SEM&EDS).Attentions were focused on apparent morphology,phase transformation and thermal stability of the products of the P2O5"absorption"at different temperatures.The results show that the temperature significantly affected the"absorption".The reaction between pure Ca3(PO4)2 and P2O5 occurred at 500℃.Calcium metaphosphate(Ca(PO3)2)was the primary product at the temperatures≤900℃ with its melting point≤900℃ while calcium pyrophosphate(Ca2P2O7)was obtained over 1000℃,which has a melting point≤1200℃.The"absorption"by pure SiO2 started at 800℃ and the most significant reaction occurred at 1000℃ with formation of silicon pyrophosphate(SiP2O7)product of melting point≤1000℃.Using mixed Ca3(PO4)2and SiO2as raw material,the"absorption"by Ca3(PO4)2 was enhanced due to existence of silica.At 600–700℃,silica was inert to P2O5and thus formed a porous structure in the raw material,which accelerated diffusion of gaseous P2O5inside the mixture.At higher temperatures,the combined"absorption"by calcium phosphate and reaction between silicon dioxide and the"absorption"product calcium pyrophosphate,reinforced the"absorption"by the mixture.Besides,it was found that both Ca(PO3)2and SiP2O7were unstable at high temperatures and would decompose to Ca2P2O7and SiO2,respectively,at over 1000℃ and 1100℃ with the release of gaseous P2O5at the same time.