Plantation-grown progenies of Melia composita Willd.were studied for variability in several physical properties: density,radial and tangential shrinkage,longitudinal permeability of heartwood and sapwood.Furthermore,...Plantation-grown progenies of Melia composita Willd.were studied for variability in several physical properties: density,radial and tangential shrinkage,longitudinal permeability of heartwood and sapwood.Furthermore,flat-sawn planks from each of the progeny were subjected to a quick-drying test for determination of kilndrying schedule.The mean density of the species was 0.39 g cm^(-3) and the wood may be categorized as light wood.Mean radial shrinkage(%) for the species was 2.8% with progeny-wise variation in radial shrinkage from 1.56 to 4.11%.Mean tangential shrinkage(%) for the species was 5.54% with progeny-wise variation in tangential shrinkage from 3.69 to 7.71%.The resultant tangentialradial shrinkage ratio was 1.98(less than two),which suggests that the wood is relatively stable with respect to drying behavior.Mean sapwood and heartwood longitudinal permeability of the species were 3.38 and 2.02 Darcy,respectively.Higher longitudinal permeability of sapwood and heartwood indicate better drying and preservative properties of the species.Terazawa quick-drying test method suggests that the species is less susceptible to drying defects.During the test,only moderate checks and cracks were observed.A tentative kiln-drying schedule was recommended based on these results.展开更多
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ...Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).展开更多
California is one of the major alfalfa (Medicago sativa L) forage-producing states in the U.S, but its production area has decreased significantly in the last couple of decades. Selection of cultivars with high yield ...California is one of the major alfalfa (Medicago sativa L) forage-producing states in the U.S, but its production area has decreased significantly in the last couple of decades. Selection of cultivars with high yield and nutritive value under late-cutting schedule strategy may help identify cultivars that growers can use to maximize yield while maintaining area for sustainable alfalfa production, but there is little information on this strategy. A field study was conducted to determine cumulative dry matter (DM) and nutritive values of 20 semi- and non-fall dormant (FD) ratings (FD 7 and FD 8 - 10, respectively) cultivars under 35-day cut in California’s Central Valley in 2020-2022. Seasonal cumulative DM yields ranged from 6.8 in 2020 to 37.0 Mg·ha−1 in 2021. Four FD 8 - 9 cultivars were the highest yielding with 3-yrs avg. DM greater than the lowest yielding lines by 46%. FD 7 cultivar “715RR” produced the highest crude protein (CP: 240 g·Kg−1) while FD 8 cultivar “HVX840RR” resulted in the highest neutral detergent fiber digestibility (NDFD: 484 g·Kg−1, 7% greater than the top yielding cultivars) but with DM yield intermediate. Yields and NDFD correlated positively but weakly indicating some semi- and non-FD cultivars performing similarly. These results suggest that selecting high yielding cultivars under 35-day cutting schedule strategy can be used as a tool to help growers to maximize yield while achieving good quality forages for sustainable alfalfa production in California’s Central Valley.展开更多
Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier.The primary difficulty exactly lies in the spatiotemporal coordination,i.e....Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier.The primary difficulty exactly lies in the spatiotemporal coordination,i.e.,allocation of limited supporting resources and collision-avoidance between heterogeneous dispatch entities.In this paper,the problem is investigated in the perspective of hybrid flow-shop scheduling problem by synthesizing the precedence,space and resource constraints.Specifically,eight processing procedures are abstracted,where tractors,preparing spots,catapults,and launching are virtualized as machines.By analyzing the constraints in sortie scheduling,a mixed-integer planning model is constructed.In particular,the constraint on preparing spot occupancy is improved to further enhance the sortie efficiency.The basic trajectory library for each dispatch entity is generated and a delayed strategy is integrated to address the collision-avoidance issue.To efficiently solve the formulated HFSP,which is essentially a combinatorial problem with tightly coupled constraints,a chaos-initialized genetic algorithm is developed.The solution framework is validated by the simulation environment referring to the Fort-class carrier,exhibiting higher sortie efficiency when compared to existing strategies.And animation of the simulation results is available at www.bilibili.com/video/BV14t421A7Tt/.The study presents a promising supporting technique for autonomous flight deck operation in the foreseeable future,and can be easily extended to other supporting scenarios,e.g.,ammunition delivery and aircraft maintenance.展开更多
Aiming at the problems of increasing uncertainty of low-carbon generation energy in active distribution network(ADN)and the difficulty of security assessment of distribution network,this paper proposes a two-phase sch...Aiming at the problems of increasing uncertainty of low-carbon generation energy in active distribution network(ADN)and the difficulty of security assessment of distribution network,this paper proposes a two-phase scheduling model for flexible resources in ADN based on probabilistic risk perception.First,a full-cycle probabilistic trend sequence is constructed based on the source-load historical data,and in the day-ahead scheduling phase,the response interval of the flexibility resources on the load and storage side is optimized based on the probabilistic trend,with the probability of the security boundary as the security constraint,and with the economy as the objective.Then in the intraday phase,the core security and economic operation boundary of theADNis screened in real time.Fromthere,it quantitatively senses the degree of threat to the core security and economic operation boundary under the current source-load prediction information,and identifies the strictly secure and low/high-risk time periods.Flexibility resources within the response interval are dynamically adjusted in real-time by focusing on high-risk periods to cope with future core risks of the distribution grid.Finally,the improved IEEE 33-node distribution system is simulated to obtain the flexibility resource scheduling scheme on the load and storage side.Thescheduling results are evaluated from the perspectives of risk probability and flexible resource utilization efficiency,and the analysis shows that the scheduling model in this paper can promote the consumption of low-carbon energy from wind and photovoltaic sourceswhile reducing the operational risk of the distribution network.展开更多
The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system perf...The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method.展开更多
Active schedule is one of the most basic and popular concepts in production scheduling research. For identical parallel machine scheduling with jobs' dynamic arrivals, the tight performance bounds of active schedules...Active schedule is one of the most basic and popular concepts in production scheduling research. For identical parallel machine scheduling with jobs' dynamic arrivals, the tight performance bounds of active schedules under the measurement of four popular objectives are respectively given in this paper. Similar analysis method and conclusions can be generalized to static identical parallel machine and single machine scheduling problem.展开更多
From the point of view of saving energy, a new shift schedule and auto-controlling strategy for automatic transmission are proposed. In order to verify this shift schedule, a simulation program using a software packag...From the point of view of saving energy, a new shift schedule and auto-controlling strategy for automatic transmission are proposed. In order to verify this shift schedule, a simulation program using a software package of Matlab/ Simulink is developed. The simulation results show the shift schedule is correct. This shift schedule has enriched the theory of vehicle automatic maneuvering and will improve the efficiency of hydrodynanic drive system of the vehicle.展开更多
开发Java Web项目中发现服务之间的调用存在超时情况,由于涉及的处理逻辑全部是异步,引入定时重试的机制,重试工具选择了JDK自带的Scheduled Thread Pool Executor。当A服务依赖B服务,B服务由于在业务高峰期处理能力降低,导致大量A服务...开发Java Web项目中发现服务之间的调用存在超时情况,由于涉及的处理逻辑全部是异步,引入定时重试的机制,重试工具选择了JDK自带的Scheduled Thread Pool Executor。当A服务依赖B服务,B服务由于在业务高峰期处理能力降低,导致大量A服务过来的请求超时,A加入了超时重试机制,间隔时间根据重试次数的多少来决定,次数越多,两次重试之间间隔的时间越多,此时的业务高峰也会给A带来大量请求,大量的超时会导致重试队列迅速堆积,直到内存溢出。该文从线程池工作机制、Scheduled Thread Pool Executor实例的创建,获取重试任务的过程以及提交任务的过程角度分析,并通过源代码的剖析和测试工具My Eclipse进行演示测试内存泄露的情况,得出避免内存泄露的解决方案。展开更多
A simple plate crown model was introduced,and the crown-flatness vector analysis method was analyzed.Based on the plate rolling technology,the rolling schedule design of elongation phase is divided into three steps.Fi...A simple plate crown model was introduced,and the crown-flatness vector analysis method was analyzed.Based on the plate rolling technology,the rolling schedule design of elongation phase is divided into three steps.First step is to calculate the reductions of first pass of elongation making full use of the mill capability to decrease the total pass number.The second step is to calculate the pass reduction for the last three or four passes to control crown and flatness by crown-flatness vector analysis method.In the third step,the maximum rolling force limit and the total pass number are adjusted to make the plate gauge at exit equal to target gauge with satisfactory flatness.The on-line application shows that this method is effective.展开更多
Two Relative-Residual-based Dynamic Schedules(RRDS) for Belief Propagation(BP) decoding of Low-Density Parity-Check(LDPC) codes are proposed,in which the Variable code-RRDS(VN-RRDS) is a greediness-reduced version of ...Two Relative-Residual-based Dynamic Schedules(RRDS) for Belief Propagation(BP) decoding of Low-Density Parity-Check(LDPC) codes are proposed,in which the Variable code-RRDS(VN-RRDS) is a greediness-reduced version of the Check code-RRDS(CN-RRDS).The RRDS only processes the variable(or check) node,which has the maximum relative residual among all the variable(or check) nodes in each decoding iteration,thus keeping less greediness and decreased complexity in comparison with the edge-based Variable-to-Check Residual Belief Propagation(VC-RBP) algorithm.Moreover,VN-RRDS propagates first the message which has the largest residual based on all check equations.For different types of LDPC codes,simulation results show that the convergence rate of RRDS is higher than that of VC-RBP while keeping very low computational complexity.Furthermore,VN-RRDS achieves faster convergence as well as better performance than CN-RRDS.展开更多
New shift schedule for automatic transmission is proposed from the point ofview of saving energy. The bench-test of automatic shift adopting this shift schedule is done onautomatic transmission's test-bed. The exp...New shift schedule for automatic transmission is proposed from the point ofview of saving energy. The bench-test of automatic shift adopting this shift schedule is done onautomatic transmission's test-bed. The experimental results show the shift schedule is correct. Thisshift schedule has enriched the theory of vehicle automatic maneuvering and will improve theefficiency of hydrodynamic drive system of the vehicle.展开更多
AIM: To establish the safety and efficacy of an indigenously developed r-hepatitis B vaccine using an accelerated schedule and to highlight the social awareness and commitment in preventing the spreading of hepatitis ...AIM: To establish the safety and efficacy of an indigenously developed r-hepatitis B vaccine using an accelerated schedule and to highlight the social awareness and commitment in preventing the spreading of hepatitis B virus infection. METHODS: The study was a multicentric, double blind, randomized (3:1) study using three doses of vaccine immunization schedule (20μg for those above 10 years old and 10 μg for those below 10 years old) on d 0, 30 and 60. One hundred and sixty-six subjects were enrolled (87 males and 76 females aged 5-35 years). The main outcome measure was assessment of immunogenicity and safety. RESULTS: A 100% seroconversion response was observed on the 30th d after the 1st injection in both the experimental groups. The sero-protection data reported a 41.2-65.6% response on the 30th d after the 1st injection and reached 100% on the 60th d. Descriptive statistical analysis showed a geometric mean titer value of 13.77 mIU/mL in the test (BEVAC) group and 10.95 mlU/mL in the commercial control (ENGERIX-B) group on the 30th d after the 1st injection. The response on the 60th d showed a geometric mean titre value (GMT) of 519.84 mlU/mL in the BEVAC group and 475.46 mlU/mL in the ENGERIX-B group. On the 90th d, the antibody titer response was observed to be 2627.58 mlU/mL in the BEVAC group and 2272.72 mlU/mL in the ENGERIX-B group. Two subjects in each group experienced pains at injection site after the first vaccination. A total of six subjects in both groups experienced a solicited adverse reaction, which included pains, swelling and redness at the injection site, three subjects in the group-B had a pain at the injection site after the third dose. No other serious adverse events occurred and no dose-related local or general symptoms were observed during the study. CONCLUSION: The vaccine is safe, efficacious and immunogenic in comparison with the well documented ENGERIX-B.展开更多
基金a part of M.Sc.thesis works funded by Forest Research Institute (Deemed) University,Dehradun (India)
文摘Plantation-grown progenies of Melia composita Willd.were studied for variability in several physical properties: density,radial and tangential shrinkage,longitudinal permeability of heartwood and sapwood.Furthermore,flat-sawn planks from each of the progeny were subjected to a quick-drying test for determination of kilndrying schedule.The mean density of the species was 0.39 g cm^(-3) and the wood may be categorized as light wood.Mean radial shrinkage(%) for the species was 2.8% with progeny-wise variation in radial shrinkage from 1.56 to 4.11%.Mean tangential shrinkage(%) for the species was 5.54% with progeny-wise variation in tangential shrinkage from 3.69 to 7.71%.The resultant tangentialradial shrinkage ratio was 1.98(less than two),which suggests that the wood is relatively stable with respect to drying behavior.Mean sapwood and heartwood longitudinal permeability of the species were 3.38 and 2.02 Darcy,respectively.Higher longitudinal permeability of sapwood and heartwood indicate better drying and preservative properties of the species.Terazawa quick-drying test method suggests that the species is less susceptible to drying defects.During the test,only moderate checks and cracks were observed.A tentative kiln-drying schedule was recommended based on these results.
文摘Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).
文摘California is one of the major alfalfa (Medicago sativa L) forage-producing states in the U.S, but its production area has decreased significantly in the last couple of decades. Selection of cultivars with high yield and nutritive value under late-cutting schedule strategy may help identify cultivars that growers can use to maximize yield while maintaining area for sustainable alfalfa production, but there is little information on this strategy. A field study was conducted to determine cumulative dry matter (DM) and nutritive values of 20 semi- and non-fall dormant (FD) ratings (FD 7 and FD 8 - 10, respectively) cultivars under 35-day cut in California’s Central Valley in 2020-2022. Seasonal cumulative DM yields ranged from 6.8 in 2020 to 37.0 Mg·ha−1 in 2021. Four FD 8 - 9 cultivars were the highest yielding with 3-yrs avg. DM greater than the lowest yielding lines by 46%. FD 7 cultivar “715RR” produced the highest crude protein (CP: 240 g·Kg−1) while FD 8 cultivar “HVX840RR” resulted in the highest neutral detergent fiber digestibility (NDFD: 484 g·Kg−1, 7% greater than the top yielding cultivars) but with DM yield intermediate. Yields and NDFD correlated positively but weakly indicating some semi- and non-FD cultivars performing similarly. These results suggest that selecting high yielding cultivars under 35-day cutting schedule strategy can be used as a tool to help growers to maximize yield while achieving good quality forages for sustainable alfalfa production in California’s Central Valley.
基金the financial support of the National Key Research and Development Plan(2021YFB3302501)the financial support of the National Natural Science Foundation of China(12102077)。
文摘Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier.The primary difficulty exactly lies in the spatiotemporal coordination,i.e.,allocation of limited supporting resources and collision-avoidance between heterogeneous dispatch entities.In this paper,the problem is investigated in the perspective of hybrid flow-shop scheduling problem by synthesizing the precedence,space and resource constraints.Specifically,eight processing procedures are abstracted,where tractors,preparing spots,catapults,and launching are virtualized as machines.By analyzing the constraints in sortie scheduling,a mixed-integer planning model is constructed.In particular,the constraint on preparing spot occupancy is improved to further enhance the sortie efficiency.The basic trajectory library for each dispatch entity is generated and a delayed strategy is integrated to address the collision-avoidance issue.To efficiently solve the formulated HFSP,which is essentially a combinatorial problem with tightly coupled constraints,a chaos-initialized genetic algorithm is developed.The solution framework is validated by the simulation environment referring to the Fort-class carrier,exhibiting higher sortie efficiency when compared to existing strategies.And animation of the simulation results is available at www.bilibili.com/video/BV14t421A7Tt/.The study presents a promising supporting technique for autonomous flight deck operation in the foreseeable future,and can be easily extended to other supporting scenarios,e.g.,ammunition delivery and aircraft maintenance.
基金supported by Key Technology Research and Application of Online Control Simulation and Intelligent Decision Making for Active Distribution Network(5108-202218280A-2-377-XG).
文摘Aiming at the problems of increasing uncertainty of low-carbon generation energy in active distribution network(ADN)and the difficulty of security assessment of distribution network,this paper proposes a two-phase scheduling model for flexible resources in ADN based on probabilistic risk perception.First,a full-cycle probabilistic trend sequence is constructed based on the source-load historical data,and in the day-ahead scheduling phase,the response interval of the flexibility resources on the load and storage side is optimized based on the probabilistic trend,with the probability of the security boundary as the security constraint,and with the economy as the objective.Then in the intraday phase,the core security and economic operation boundary of theADNis screened in real time.Fromthere,it quantitatively senses the degree of threat to the core security and economic operation boundary under the current source-load prediction information,and identifies the strictly secure and low/high-risk time periods.Flexibility resources within the response interval are dynamically adjusted in real-time by focusing on high-risk periods to cope with future core risks of the distribution grid.Finally,the improved IEEE 33-node distribution system is simulated to obtain the flexibility resource scheduling scheme on the load and storage side.Thescheduling results are evaluated from the perspectives of risk probability and flexible resource utilization efficiency,and the analysis shows that the scheduling model in this paper can promote the consumption of low-carbon energy from wind and photovoltaic sourceswhile reducing the operational risk of the distribution network.
文摘The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method.
基金This work was supported by the National Natural Science Foundation of China (No. 60474002, 60504026)Shanghai Development Foundation forScience and Technology (No. 04DZ11008)
文摘Active schedule is one of the most basic and popular concepts in production scheduling research. For identical parallel machine scheduling with jobs' dynamic arrivals, the tight performance bounds of active schedules under the measurement of four popular objectives are respectively given in this paper. Similar analysis method and conclusions can be generalized to static identical parallel machine and single machine scheduling problem.
基金This project is supported by National Natural Science Foundation of China( No.59705005) and Backbone Teacher Foundation of Minis
文摘From the point of view of saving energy, a new shift schedule and auto-controlling strategy for automatic transmission are proposed. In order to verify this shift schedule, a simulation program using a software package of Matlab/ Simulink is developed. The simulation results show the shift schedule is correct. This shift schedule has enriched the theory of vehicle automatic maneuvering and will improve the efficiency of hydrodynanic drive system of the vehicle.
文摘开发Java Web项目中发现服务之间的调用存在超时情况,由于涉及的处理逻辑全部是异步,引入定时重试的机制,重试工具选择了JDK自带的Scheduled Thread Pool Executor。当A服务依赖B服务,B服务由于在业务高峰期处理能力降低,导致大量A服务过来的请求超时,A加入了超时重试机制,间隔时间根据重试次数的多少来决定,次数越多,两次重试之间间隔的时间越多,此时的业务高峰也会给A带来大量请求,大量的超时会导致重试队列迅速堆积,直到内存溢出。该文从线程池工作机制、Scheduled Thread Pool Executor实例的创建,获取重试任务的过程以及提交任务的过程角度分析,并通过源代码的剖析和测试工具My Eclipse进行演示测试内存泄露的情况,得出避免内存泄露的解决方案。
基金Item Sponsored by National Natural Science Foundation of China(50104004)
文摘A simple plate crown model was introduced,and the crown-flatness vector analysis method was analyzed.Based on the plate rolling technology,the rolling schedule design of elongation phase is divided into three steps.First step is to calculate the reductions of first pass of elongation making full use of the mill capability to decrease the total pass number.The second step is to calculate the pass reduction for the last three or four passes to control crown and flatness by crown-flatness vector analysis method.In the third step,the maximum rolling force limit and the total pass number are adjusted to make the plate gauge at exit equal to target gauge with satisfactory flatness.The on-line application shows that this method is effective.
基金supported by the Fundamental Research Funds for the Central Universities
文摘Two Relative-Residual-based Dynamic Schedules(RRDS) for Belief Propagation(BP) decoding of Low-Density Parity-Check(LDPC) codes are proposed,in which the Variable code-RRDS(VN-RRDS) is a greediness-reduced version of the Check code-RRDS(CN-RRDS).The RRDS only processes the variable(or check) node,which has the maximum relative residual among all the variable(or check) nodes in each decoding iteration,thus keeping less greediness and decreased complexity in comparison with the edge-based Variable-to-Check Residual Belief Propagation(VC-RBP) algorithm.Moreover,VN-RRDS propagates first the message which has the largest residual based on all check equations.For different types of LDPC codes,simulation results show that the convergence rate of RRDS is higher than that of VC-RBP while keeping very low computational complexity.Furthermore,VN-RRDS achieves faster convergence as well as better performance than CN-RRDS.
基金This project is supported by National Natural Science Foundation of China (No.59705005).
文摘New shift schedule for automatic transmission is proposed from the point ofview of saving energy. The bench-test of automatic shift adopting this shift schedule is done onautomatic transmission's test-bed. The experimental results show the shift schedule is correct. Thisshift schedule has enriched the theory of vehicle automatic maneuvering and will improve theefficiency of hydrodynamic drive system of the vehicle.
基金Supported by the Biological E Limited, Hyderabad, India
文摘AIM: To establish the safety and efficacy of an indigenously developed r-hepatitis B vaccine using an accelerated schedule and to highlight the social awareness and commitment in preventing the spreading of hepatitis B virus infection. METHODS: The study was a multicentric, double blind, randomized (3:1) study using three doses of vaccine immunization schedule (20μg for those above 10 years old and 10 μg for those below 10 years old) on d 0, 30 and 60. One hundred and sixty-six subjects were enrolled (87 males and 76 females aged 5-35 years). The main outcome measure was assessment of immunogenicity and safety. RESULTS: A 100% seroconversion response was observed on the 30th d after the 1st injection in both the experimental groups. The sero-protection data reported a 41.2-65.6% response on the 30th d after the 1st injection and reached 100% on the 60th d. Descriptive statistical analysis showed a geometric mean titer value of 13.77 mIU/mL in the test (BEVAC) group and 10.95 mlU/mL in the commercial control (ENGERIX-B) group on the 30th d after the 1st injection. The response on the 60th d showed a geometric mean titre value (GMT) of 519.84 mlU/mL in the BEVAC group and 475.46 mlU/mL in the ENGERIX-B group. On the 90th d, the antibody titer response was observed to be 2627.58 mlU/mL in the BEVAC group and 2272.72 mlU/mL in the ENGERIX-B group. Two subjects in each group experienced pains at injection site after the first vaccination. A total of six subjects in both groups experienced a solicited adverse reaction, which included pains, swelling and redness at the injection site, three subjects in the group-B had a pain at the injection site after the third dose. No other serious adverse events occurred and no dose-related local or general symptoms were observed during the study. CONCLUSION: The vaccine is safe, efficacious and immunogenic in comparison with the well documented ENGERIX-B.