期刊文献+
共找到807篇文章
< 1 2 41 >
每页显示 20 50 100
Case Studies of the Microphysical and Kinematic Structure of Summer Mesoscale Precipitation Clouds over the Eastern Tibetan Plateau
1
作者 Shuo JIA Jiefan YANG Hengchi LEI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期97-114,共18页
Three cases of microphysical characteristics and kinematic structures in the negative temperature region of summer mesoscale cloud systems over the eastern Tibetan Plateau(TP)were investigated using X-band dual-polari... Three cases of microphysical characteristics and kinematic structures in the negative temperature region of summer mesoscale cloud systems over the eastern Tibetan Plateau(TP)were investigated using X-band dual-polarization radar.The time-height series of radar physical variables and mesoscale horizontal divergence δderived by quasi-vertical profiles(QVPs)indicated that the dendritic growth layer(DGL,-20°C to-10°C)was ubiquitous,with large-value zones of K_(DP)(specific differential phase),Z_(DR)(differential reflectivity),or both,and corresponded to various dynamic fields(ascent or descent).Ascents in the DGL of cloud systems with vigorous vertical development were coincident with large-value zones of Z_(DR),signifying ice crystals with a large axis ratio,but with no obvious large values of K_(DP),which differs from previous findings.It is speculated that ascent in the DGL promoted ice crystals to undergo further growth before sinking.If there was descent in the DGL,a high echo top corresponded to large values of K_(DP),denoting a large number concentration of ice crystals;but with the echo top descending,small values of K_(DP) formed.This is similar to previous results and reveals that a high echo top is conducive to the generation of ice crystals.When ice particles fall to low levels(-10℃ to 0℃),they grow through riming,aggregation,or deposition,and may not be related to the kinematic structure.It is important to note that this study was only based on a limited number of cases and that further research is therefore needed. 展开更多
关键词 Tibetan Plateau polarimetric variables MICROPHYSICS dendritic growth layer kinematic structure aggregation RIMING
下载PDF
An approach for determination of lateral limit angle in kinematic planar sliding analysis for rock slopes
2
作者 Xiaojuan Yang Jie Hu +1 位作者 Honglei Sun Jun Zheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1305-1314,共10页
Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar slid... Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar sliding kinematic analysis is significantly influenced by the value assigned to the lateral limit angleγlim.However,the assignment ofγlim is currently used generally based on an empirical criterion.This study aims to propose an approach for determining the value ofγlim in deterministic and probabilistic kinematic planar sliding analysis.A new perspective is presented to reveal thatγlim essentially influences the probability of forming a potential planar sliding block.The procedure to calculate this probability is introduced using the block theory method.It is found that the probability is correlated with the number of discontinuity sets presented in rock masses.Thus,different values ofγlim for rock masses with different sets of discontinuities are recommended in both probabilistic and deterministic planar sliding kinematic analyses;whereas a fixed value ofγlim is commonly assigned to different types of rock masses in traditional method.Finally,an engineering case was used to compare the proposed and traditional kinematic analysis methods.The error rates of the traditional method vary from 45%to 119%,while that of the proposed method ranges between 1%and 17%.Therefore,it is likely that the proposed method is superior to the traditional one. 展开更多
关键词 kinematic analysis Block theory Planar sliding Lateral limit angle Rock slope
下载PDF
Kinematic deformation and intensity assessment of the 2021 Maduo M_(S)7.4 earthquake in Qinghai revealed by high-frequency GNSS
3
作者 Yu Li Yuebing Wang +2 位作者 Lijiang Zhao Hongbo Shi Pingping Wang 《Geodesy and Geodynamics》 EI CSCD 2024年第3期230-240,共11页
Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advance... Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advancement of GNSS observation and data processing makes it play an important role in this field,especially the high-frequency GNSS.We used the differential positioning method to calculate the 1 HZ GNSS data from 98 sites within 1000 km of the M_(S)7.4 Maduo earthquake epicenter.The kinematic deformation field and the distribution of the seismic intensity by using the peak ground velocity derived from displacement waveforms were obtained.The results show that:1)Horizontal coseismic response deformation levels ranging from 25 mm to 301 mm can be observed within a 1000 km radius from the epicenter.Coseismic response deformation on the east and west sides shows bilateral asymmetry,which markedly differs from the symmetry presented by surface rupture.2)The seismic intensity obtained through high-frequency GNSS and field investigations exhibits good consistency of the scope and orientation in the high seismic intensity area,although the former is generally slightly smaller than the latter.3)There may exist obstacles on the eastern side of the seismogenic fault.The Maduo earthquake induced a certain tectonic stress loading effect on the western Kunlun Pass-Jiangcuo fault(KPJF)and Maqin-Maqu segment,resulting in higher seismic risk in the future. 展开更多
关键词 Maduo earthquake High-frequency GNSS kinematic deformation Seismic intensity
下载PDF
Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas
4
作者 Amit Jaiswal A.K.Verma T.N.Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期167-182,共16页
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil... The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road. 展开更多
关键词 Rock mass classification kinematic analysis Slope stability Himalayan road Static and dynamic conditions
下载PDF
Acute effect of foot strike patterns on in vivo tibiotalar and subtalar joint kinematics during barefoot running
5
作者 Dongqiang Ye Lu Li +4 位作者 Shen Zhang Songlin Xiao Xiaole Sun Shaobai Wang Weijie Fu 《Journal of Sport and Health Science》 SCIE CSCD 2024年第1期108-117,共10页
Background:Foot kinematics,such as excessive eversion and malalignment of the hindfoot,are believed to be associated with running-related injuries.The maj ority of studies to date show that different foot strike patte... Background:Foot kinematics,such as excessive eversion and malalignment of the hindfoot,are believed to be associated with running-related injuries.The maj ority of studies to date show that different foot strike patterns influence these specific foot and ankle kinematics.However,technical deficiencies in traditional motion capture approaches limit knowledge of in vivo joint kinematics with respect to rearfoot and forefoot strike patterns(RFS and FFS,respectively).This study uses a high-speed dual fluoroscopic imaging system(DFIS)to determine the effects of different foot strike patterns on 3D in vivo tibiotalar and subtalar joints kinematics.Methods:Fifteen healthy male recreational runners underwent foot computed tomography scanning for the construction of 3-dimensional models.A high-speed DFIS(100 Hz)was used to collect 6 degrees of freedom kinematics for participants’tibiotalar and subtalar joints when they adopted RFS and FFS in barefoot condition.Results:Compared with RFS,FFS exhibited greater internal rotation at 0%-20%of the stance phase in the tibiotalar joint.The peak internal rotation angle of the tibiotalar joint under FFS was greater than under RFS(p<0.001,Cohen’s d=0.92).RFS showed more dorsiflexion at 0%-20%of the stance phase in the tibiotalar joint than FFS.RFS also presented a larger anterior translation(p<0.001,Cohen’s d=1.28)in the subtalar joint at i nitial contact than FFS.Conclusion:Running with acute barefoot FFS increases the internal rotation of the tibiotalar joint in the early stance.The use of high-speed DFIS to quantify the movement of the tibiotalar and subtalar joint was critical to revealing the effects of RF S and FFS during running. 展开更多
关键词 Foot strike patterns High-speed dual fluoroscopic imaging system In vivo kinematics Running
下载PDF
Mid-term outcomes of a kinematically designed cruciate retaining total knee arthroplasty
6
作者 Jonathan L Katzman Akram A Habibi +4 位作者 Muhammad A Haider Casey Cardillo Ivan Fernandez-Madrid Morteza Meftah Ran Schwarzkopf 《World Journal of Orthopedics》 2024年第2期118-128,共11页
BACKGROUND Advances in implant material and design have allowed for improvements in total knee arthroplasty(TKA)outcomes.A cruciate retaining(CR)TKA provides the least constraint of TKA designs by preserving the nativ... BACKGROUND Advances in implant material and design have allowed for improvements in total knee arthroplasty(TKA)outcomes.A cruciate retaining(CR)TKA provides the least constraint of TKA designs by preserving the native posterior cruciate ligament.Limited research exists that has examined clinical outcomes or patient reported outcome measures(PROMs)of a large cohort of patients undergoing a CR TKA utilizing a kinematically designed implant.It was hypothesized that the studied CR Knee System would demonstrate favorable outcomes and a clinically significant improvement in pain and functional scores.AIM To assess both short-term and mid-term clinical outcomes and PROMs of a novel CR TKA design.METHODS A retrospective,multi-surgeon study identified 255 knees undergoing a TKA utilizing a kinematically designed CR Knee System(JOURNEY™II CR;Smith and Nephew,Inc.,Memphis,TN)at an urban,academic medical institution between March 2015 and July 2021 with a minimum of two-years of clinical follow-up with an orthopedic surgeon.Patient demographics,surgical information,clinical outcomes,and PROMs data were collected via query of electronic medical records.The PROMs collected in the present study included the Knee Injury and Osteoarthritis Outcome Score for Joint Replacement(KOOS JR)and Patient-Reported Outcomes Measurement Information System(PROMIS■)scores.The significance of improvements in mean PROM scores from preoperative scores to scores collected at six months and two-years postoperatively was analyzed using Independent Samples t-tests.RESULTS Of the 255 patients,65.5%were female,43.8%were White,and patients had an average age of 60.6 years.Primary osteoarthritis(96.9%)was the most common primary diagnosis.The mean surgical time was 105.3 minutes and mean length of stay was 2.1 d with most patients discharged home(92.5%).There were 18 emergency department(ED)visits within 90 d of surgery resulting in a 90 d ED visit rate of 7.1%,including a 2.4%orthopedic-related ED visit rate and a 4.7%non-orthopedic-related ED visit rate.There were three(1.2%)hospital readmissions within 90 d postoperatively.With a mean time to latest follow-up of 3.3 years,four patients(1.6%)required revision,two for arthrofibrosis,one for aseptic femoral loosening,and one for peri-prosthetic joint infection.There were significant improvements in KOOS JR,PROMIS Pain Intensity,PROMIS Pain Interference,PROMIS Mobility,and PROMIS Physical Health from preoperative scores to six month and two-year postoperative scores.CONCLUSION The evaluated implant is an effective,novel design offering excellent outcomes and low complication rates.At a mean follow up of 3.3 years,four patients required revisions,three aseptic and one septic,resulting in an overall implant survival rate of 98.4%and an aseptic survival rate of 98.8%.The results of our study demonstrate the utility of this kinematically designed implant in the setting of primary TKA. 展开更多
关键词 Total knee arthroplasty Cruciate retaining kinematic design SURVIVORSHIP Bearing material Prosthetic design Clinical outcomes Patient-reported outcome measures
下载PDF
3-Dimensional Kinematic Comparison of Arm Movements between an Individual with NGLY1 Deficiency and a Neurotypical Individual
7
作者 Charles S. Layne Christopher A. Malaya +6 位作者 Brock Futrell Dacia Martinez Diaz Christian Alfaro Hannah E. Gustafson Subhalakshmi Chandrasekaran Rhea M. Phatak Bernhard Suter 《Case Reports in Clinical Medicine》 2024年第4期122-146,共25页
NGLY1 Deficiency is an ultra-rare autosomal recessively inherited disorder. Characteristic symptoms include among others, developmental delays, movement disorders, liver function abnormalities, seizures, and problems ... NGLY1 Deficiency is an ultra-rare autosomal recessively inherited disorder. Characteristic symptoms include among others, developmental delays, movement disorders, liver function abnormalities, seizures, and problems with tear formation. Movements are hyperkinetic and may include dysmetric, choreo-athetoid, myoclonic and dystonic movement elements. To date, there have been no quantitative reports describing arm movements of individuals with NGLY1 Deficiency. This report provides quantitative information about a series of arm movements performed by an individual with NGLY1 Deficiency and an aged-matched neurotypical participant. Three categories of arm movements were tested: 1) open ended reaches without specific end point targets;2) goal-directed reaches that included grasping an object;3) picking up small objects from a table placed in front of the participants. Arm movement kinematics were obtained with a camera-based motion analysis system and “initiation” and “maintenance” phases were identified for each movement. The combination of the two phases was labeled as a “complete” movement. Three-dimensional analysis techniques were used to quantify the movements and included hand trajectory pathlength, joint motion area, as well as hand trajectory and joint jerk cost. These techniques were required to fully characterize the movements because the NGLY1 individual was unable to perform movements only in the primary plane of progression instead producing motion across all three planes of movement. The individual with NGLY1 Deficiency was unable to pick up objects from a table or effectively complete movements requiring crossing the midline. The successfully completed movements were analyzed using the above techniques and the results of the two participants were compared statistically. Almost all comparisons revealed significant differences between the two participants, with a notable exception of the 3D initiation area as a percentage of the complete movement. The statistical tests of these measures revealed no significant differences between the two participants, possibly suggesting a common underlying motor control strategy. The 3D techniques used in this report effectively characterized arm movements of an individual with NGLY1 deficiency and can be used to provide information to evaluate the effectiveness of genetic, pharmacological, or physical rehabilitation therapies. 展开更多
关键词 NGLY1 Deficiency Developmental Disorders kinematicS 3 Dimensional Analyses
下载PDF
Configuration Design and Kinematic Performance Analysis of a Novel 4-DOF Parallel Ankle Rehabilitation Mechanism with Two Virtual Motion Centers
8
作者 Jingke Song Jun Wei +3 位作者 Bin Yu Chenglei Liu Cunjin Ai Jianjun Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期87-104,共18页
Aiming at the problem that the existing ankle rehabilitation robot is difficult to fully fit the complex motion of human ankle joint and has poor human-machine motion compatibility,an equivalent series mechanism model... Aiming at the problem that the existing ankle rehabilitation robot is difficult to fully fit the complex motion of human ankle joint and has poor human-machine motion compatibility,an equivalent series mechanism model that is highly matched with the actual bone structure of the human ankle joint is proposed and mapped into a parallel rehabilita-tion mechanism.The parallel rehabilitation mechanism has two virtual motion centers(VMCs),which can simulate the complex motion of the ankle joint,adapt to the individual differences of various patients,and can meet the reha-bilitation needs of both left and right feet of patients.Firstly,based on the motion properties and physiological structure of the human ankle joint,the mapping relationship between the rehabilitation mechanism and ankle joint is determined,and the series equivalent model of the ankle joint is established.According to the kinematic and con-straint properties of the ankle equivalent model,the configuration design of the parallel ankle rehabilitation robot is carried out.Secondly,according to the intersecting motion planes theory,the full-cycle mobility of the mechanism is proved,and the continuous axis of the mechanism is judged based on the constraint power and its derivative.Then,the kinematics of the parallel ankle rehabilitation robot is analyzed.Finally,based on the OpenSim biomechanical soft-ware,a human-machine coupling rehabilitation simulation model is established to evaluate the rehabilitation effect,which lays the foundation for the formulation of a rehabilitation strategy for the later prototype. 展开更多
关键词 Ankle rehabilitation robot Double-VMCs mechanism kinematic performance Human-machine rehabilitation simulation
下载PDF
A Comparative Study on Kinematic Calibration for a 3-DOF Parallel Manipulator Using the Complete-Minimal,Inverse-Kinematic and Geometric-Constraint Error Models
9
作者 Haiyu Wu Lingyu Kong +2 位作者 Qinchuan Li Hao Wang Genliang Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期206-230,共25页
Kinematic calibration is a reliable way to improve the accuracy of parallel manipulators, while the error model dramatically afects the accuracy, reliability, and stability of identifcation results. In this paper, a c... Kinematic calibration is a reliable way to improve the accuracy of parallel manipulators, while the error model dramatically afects the accuracy, reliability, and stability of identifcation results. In this paper, a comparison study on kinematic calibration for a 3-DOF parallel manipulator with three error models is presented to investigate the relative merits of diferent error modeling methods. The study takes into consideration the inverse-kinematic error model, which ignores all passive joint errors, the geometric-constraint error model, which is derived by special geometric constraints of the studied RPR-equivalent parallel manipulator, and the complete-minimal error model, which meets the complete, minimal, and continuous criteria. This comparison focuses on aspects such as modeling complexity, identifcation accuracy, the impact of noise uncertainty, and parameter identifability. To facilitate a more intuitive comparison, simulations are conducted to draw conclusions in certain aspects, including accuracy, the infuence of the S joint, identifcation with noises, and sensitivity indices. The simulations indicate that the complete-minimal error model exhibits the lowest residual values, and all error models demonstrate stability considering noises. Hereafter, an experiment is conducted on a prototype using a laser tracker, providing further insights into the diferences among the three error models. The results show that the residual errors of this machine tool are signifcantly improved according to the identifed parameters, and the complete-minimal error model can approach the measurements by nearly 90% compared to the inverse-kinematic error model. The fndings pertaining to the model process, complexity, and limitations are also instructive for other parallel manipulators. 展开更多
关键词 kinematic calibration Parallel manipulator Error modeling Product of exponential(POE)
下载PDF
Kinematic Control of Serial Manipulators Under False Data Injection Attack
10
作者 Yinyan Zhang Shuai Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期1009-1019,共11页
With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits ... With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits can be achieved with such a configuration,it also brings the concern of cyber attacks to the industrial control systems,such as networked manipulators that are widely adopted in industrial automation.For such systems,a false data injection attack on a control-center-to-manipulator(CC-M)communication channel is undesirable,and has negative effects on the manufacture quality.In this paper,we propose a resilient remote kinematic control method for serial manipulators undergoing a false data injection attack by leveraging the kinematic model.Theoretical analysis shows that the proposed method can guarantee asymptotic convergence of the regulation error to zero in the presence of a type of false data injection attack.The efficacy of the proposed method is validated via simulations. 展开更多
关键词 Cyber-physical systems false data injection attack MANIPULATORS remote kinematic control
下载PDF
3D Kinematics of Classical Cepheids According to Gaia EDR3 Catalog
11
作者 V.V.Bobylev A.T.Bajkova 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第4期1-14,共14页
The kinematics of about 2000 classical Cepheids of the Milky Way with data from Gaia EDR3 catalog has been studied.For some of these stars,there are line-of-sight velocities.On the basis of the nonlinear rotation mode... The kinematics of about 2000 classical Cepheids of the Milky Way with data from Gaia EDR3 catalog has been studied.For some of these stars,there are line-of-sight velocities.On the basis of the nonlinear rotation model,the parameters of the rotation curve of the Galaxy were determined.The circular linear rotation velocity of the near-solar neighborhood around the Galaxy center was V0=236±3 km s^(−1) for the assumed Sun's galactocentric distance R0=8.1±0.1 kpc.Analysis of residual velocities of Cepheids based on the linear Ogorodnikov–Milne model showed the presence of the following significantly different from zero gradients:∂U/∂x,∂U/∂z,∂V/∂x,∂V/∂z and∂W/∂x,which behave differently depending on the selection radius.The most interesting is the gradient∂W/∂x∼−0.5±0.1 km s^(−1) kpc^(−1)(positive rotation of this star system around the Galactic axis y,Ωy)since the velocities W are free of Galactic rotation.Here we have an indirect influence of various effects leading to a perturbation of the vertical velocities of the Galactic disk stars.Based on a simpler model,a more accurate estimate of this rotation is obtained,Ωy=0.51±0.07 km s^(−1) kpc^(−1). 展开更多
关键词 STARS distances-Galaxy kinematics and dynamics-stars VARIABLES CEPHEIDS
下载PDF
Velocity Dispersion σ_(aper)Aperture Corrections as a Function of Galaxy Properties from Integral-field Stellar Kinematics of 10,000 MaNGA Galaxies
12
作者 Kai Zhu Ran Li +3 位作者 Xiaoyue Cao Shengdong Lu Michele Cappellari Shude Mao 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第8期53-64,共12页
The second moment of the stellar velocity within the effective radius,denoted by σ^(2)_(e),is a crucial quantity in galaxy studies,as it provides insight into galaxy properties and their mass distributions.However,la... The second moment of the stellar velocity within the effective radius,denoted by σ^(2)_(e),is a crucial quantity in galaxy studies,as it provides insight into galaxy properties and their mass distributions.However,large spectroscopic surveys typically do not measure σ_(e) directly,instead providing σ_(aper),the second moment of the stellar velocity within a fixed fiber aperture.In this paper,we derive an empirical aperture correction formula,given byσ_(aper)/σ_(e)=(R_(aper)/R_(e))^(α),using spatially resolved stellar kinematics extracted from approximately 10,000 Sloan Digital Sky Survey-Mapping Nearby Galaxies at Apache Point Observatory integral field unit observations.Our analysis reveals a strong dependence ofαon the r-band absolute magnitude M_(r),g-i color,and Sérsic index nSer,whereαvalues are lower for brighter,redder galaxies with higher Sérsic indices.Our results demonstrate that the aperture correction derived from previous literature on early-type galaxies cannot be applied to predict the aperture corrections for galaxies with intermediate Sérsic indices.We provide a lookup table ofαvalues for different galaxy types,with parameters in the ranges of-18>M_(r)>-24,0.4<g-i<1.6,and 0<n_(Ser)<8.A Python script is provided to obtain the correction factors from the lookup table. 展开更多
关键词 GALAXIES evolution-galaxies formation-galaxies kinematics and dynamics-galaxies structure
下载PDF
Machine-learning-based head impact subtyping based on the spectral densities of the measurable head kinematics
13
作者 Xianghao Zhan Yiheng Li +11 位作者 Yuzhe Liu Nicholas J.Cecchi Samuel J.Raymond Zhou Zhou Hossein Vahid Alizadeh Jesse Ruan Saeed Barbat Stephen Tiernan Olivier Gevaert Michael M.Zeineh Gerald A.Grant David B.Camarillo 《Journal of Sport and Health Science》 SCIE CAS CSCD 2023年第5期619-629,F0003,共12页
Background:Traumatic brain injury can be caused by head impacts,but many brain injury risk estimation models are not equally accurate across the variety of impacts that patients may undergo,and the characteristics of ... Background:Traumatic brain injury can be caused by head impacts,but many brain injury risk estimation models are not equally accurate across the variety of impacts that patients may undergo,and the characteristics of different types of impacts are not well studied.We investigated the spectral characteristics of different head impact types with kinematics classification.Methods:Data were analyzed from 3262 head impacts from lab reconstruction,American football,mixed martial arts,and publicly available car crash data.A random forest classifier with spectral densities of linear acceleration and angular velocity was built to classify head impact types(e.g.,football,car crash,mixed martial arts).To test the classifier robustness,another 271 lab-reconstructed impacts were obtained from 5 other instrumented mouthguards.Finally,with the classifier,type-specific,nearest-neighbor regression models were built for brain strain.Results:The classifier reached a median accuracy of 96% over 1000 random partitions of training and test sets.The most important features in the classification included both low-and high-frequency features,both linear acceleration features and angular velocity features.Different head impact types had different distributions of spectral densities in low-and high-frequency ranges(e.g.,the spectral densities of mixed martial arts impacts were higher in the high-frequency range than in the low-frequency range).The type-specific regression showed a generally higher R2value than baseline models without classification.Conclusion:The machine-learning-based classifier enables a better understanding of the impact kinematics spectral density in different sports,and it can be applied to evaluate the quality of impact-simulation systems and on-field data augmentation. 展开更多
关键词 Classification Contact sports Head impacts Impact kinematics Traumatic brain injuryTagedAPTARAEnd
下载PDF
Physical and Kinematical Characteristics of Wolf–Rayet Central Stars and their Host Planetary Nebulae
14
作者 Z.Awad A.Ali 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第9期219-240,共22页
We address the physical and kinematical properties of Wolf–Rayet[WR]central stars(CSs)and their host planetary nebulae(PNe).The studied sample comprises all[WR]CSs that are currently known.The analysis is based on re... We address the physical and kinematical properties of Wolf–Rayet[WR]central stars(CSs)and their host planetary nebulae(PNe).The studied sample comprises all[WR]CSs that are currently known.The analysis is based on recent observations of the parallax,proper motion,and color index of[WR]CSs from the Gaia space mission’s early third release(eDR3)catalog,as well as common nebular characteristics.The results revealed an evolutionary sequence,in terms of decreasing Teff,from the early hot[WO 1]to the late cold[WC 12]stars.This evolutionary sequence extends beyond[WR]CS temperature and luminosity to additional CS and nebular characteristics.The statistical analysis shows that the mean final stellar mass and evolutionary age of the[WR]CS sample are 0.595±0.13M⊙and 9449±2437 yr,respectively,with a mean nebular dynamical age of 7270±1380 yr.In addition,we recognize that the color of the majority(∼85%)of[WR]CSs tends to be red rather than their genuine blue color.The analysis indicates that two-thirds of the apparent red color of most[WR]s is attributed to the interstellar extinction whereas the other one-third is due to the PN self-extinction effect. 展开更多
关键词 Wolf-Rayet-(ISM )planetary nebulae general-ISM kinematics and dynamics
下载PDF
Introduction to Synchronized Kinematic and Electromagnetic Mechanics
15
作者 André Michaud 《Journal of Modern Physics》 CAS 2023年第6期876-932,共57页
Introduction to fundamental physics according to the parallel harmonization of kinematic and electromagnetic mechanics, in accordance with Wilhelm Wien’s project, which involved the integration in kinematic mechanics... Introduction to fundamental physics according to the parallel harmonization of kinematic and electromagnetic mechanics, in accordance with Wilhelm Wien’s project, which involved the integration in kinematic mechanics of the mass increase of the electron as a function of its velocity, as measured by Walter Kaufmann with his bubble-chamber experiments, and analyzed and confirmed by H. A. Lorentz and all the leading edge physicists who then re-analyzed this data. 展开更多
关键词 kinematic Mechanics Electromagnetic Mechanics Electrostatic Recall Constant Restoration Force GRAVITATION
下载PDF
Kinematically Aligned Total Knee Arthroplasty for Valgus Osteoarthritis of More than 10°―Is It Still a “Challenging Surgery”?
16
作者 Yoshinori Soda Toshiya Kano Mitsuhiro Nakamura 《Open Journal of Orthopedics》 2023年第9期355-369,共15页
Mechanically aligned total knee arthroplasty (TKA) for valgus knee is considered a “challenging surgery.” Recently, the kinematic alignment (KA) method has gained attention. This study aimed to present objective cli... Mechanically aligned total knee arthroplasty (TKA) for valgus knee is considered a “challenging surgery.” Recently, the kinematic alignment (KA) method has gained attention. This study aimed to present objective clinical data, such as intraoperative balance assessment and radiographic evaluation of postoperative lower extremity alignment after TKA using the KA method for valgus deformity. Twenty-one TKA knees (mean age, 74 years;2 males, 19 females) with KA for severe valgus deformity (hip-knee-ankle-angle ≥ 10°) performed at our department in the past 3 years were included in this study. Intraoperative gap and balance measurements and postoperative radiographic evaluation were performed. A total arc of range of motion was achieved up to 98% of preoperative values at 3 weeks postoperatively. Intraoperative gap and balance were stable throughout the entire range of motion. In addition, there were no statistically significant differences in either balance or gap values at each flexion angle. KA TKA is a “simple surgery” rather than a “challenging surgery” because additional soft tissue procedures are not required, operative time is short, intraoperative and postoperative balance is very stable, and a good alignment is achieved. This procedure may relieve surgeons of the stress of TKA for valgus deformities. 展开更多
关键词 Total Knee Arthroplasty kinematic Alignment Valgus Deformity Calipered Technique
下载PDF
Kinematic Analysis of Patients before and after Abdominoplasty
17
作者 Jack D. Sudduth Jessica L. Marquez +6 位作者 Mackenzie French Christopher Clinker Justin Webb Devin Eddington Paa Ekow Hoyte-Williams Bradford Rockwell Bo Foreman 《Modern Plastic Surgery》 2023年第3期85-93,共9页
Background: Abdominoplasty has consistently been one of the top cosmetic procedures performed each year with a high patient satisfaction rate. Excision of the excess abdominal skin has been shown to reduce low back pa... Background: Abdominoplasty has consistently been one of the top cosmetic procedures performed each year with a high patient satisfaction rate. Excision of the excess abdominal skin has been shown to reduce low back pain and improve posture. The effects of the excess skin removal would, theoretically, be demonstrated through changes in gait. This study aimed to measure kinematic differences during gait to obtain objective measures for abdominoplasty. Methods: Subjects were recruited from a large, academic plastic surgery clinic. Patients were included if they were 18 years of age, able to walk without an assistive device or any hindrance by any existing medical condition, and were scheduled for abdominoplasty. Kinematic measurements were taken before and after surgery using a plug-in-gait marker set, cameras, and a treadmill. Pre- and postoperative measurements were compared and a post-hoc power analysis was created. Results: Nine total patients were included in the study. Joint angles before and after surgery demonstrated moderate differences. However, analysis revealed few significant differences for spatiotemporal or kinematic variables. The power analysis demonstrated an inadequate number of patients to detect significance. Conclusions: Despite the literature describing subjective and objective improvements following abdominoplasty, we were unable to validate this. Overall, there were noticeable differences in joint angles pre- and postoperatively, though the study is too underpowered to reach statistical significance. This preliminary data shows that if the study was powered through a larger cohort, then more generalizable conclusions could be drawn. 展开更多
关键词 ABDOMINOPLASTY GAIT kinematicS SURGERY Plastic Surgery
下载PDF
KINEMATIC DESIGN OF A RECONFIGURABLE MINIATURE PARALLEL KINEMATIC MACHINE 被引量:5
18
作者 HuangTian DJWhitechouse 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第1期79-82,共4页
The kinematic design of a reconfigurable miniature parallel kinematic machineis dealt with. It shows that the reconfigurability may be realized by packaging a tripod-basedparallel mechanism with fixed length struts in... The kinematic design of a reconfigurable miniature parallel kinematic machineis dealt with. It shows that the reconfigurability may be realized by packaging a tripod-basedparallel mechanism with fixed length struts into a compact and rigid frame with which the differentconfigurations can be formed. Utilizing a dual parameter model, the influences of the geometricalparameters on the dexterous performance and the workspace/machine volume ratio are investigated. Anovel global performance index for the dimensional synthesis is proposed and optimized, resulting ina set of dimensionless geometrical parameters. 展开更多
关键词 Parallel kinematic machine MODULARITY kinematic design
下载PDF
Segmental Kinematic Coupling of the Human Spinal Column during Locomotion 被引量:2
19
作者 Guo-ru Zhao Lei Ren +3 位作者 Lu-quan Ren John R. Hutchinson Li-mei Tian Jian S. Dai 《Journal of Bionic Engineering》 SCIE EI CSCD 2008年第4期328-334,共7页
As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well underst... As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well understood. However, so far our understanding of the motions and functional contributions of the human spine during locomotion is still very poor and simultaneous in-vivo limb and spinal column motion data are scarce. The objective of this study is to investigate the delicate in-vivo kinematic coupling between different functional regions of the human spinal column during locomotion as a stepping stone to explore the locomotor function of the human spine complex. A novel infrared reflective marker cluster system was constrncted using stereophotogrammetry techniques to record the 3D in-vivo geometric shape of the spinal column and the segmental position and orientation of each functional spinal region simultaneously. Gait measurements of normal walking were conducted. The preliminary results show that the spinal column shape changes periodically in the frontal plane during locomotion. The segmental motions of different spinal functional regions appear to be strongly coupled, indicating some synergistic strategy may be employed by the human spinal column to facilitate locomotion. In contrast to traditional medical imaging-based methods, the proposed technique can be used to investigate the dynamic characteristics of the spinal column, hence providing more insight into the functional biomechanics of the human spine. 展开更多
关键词 BIOMECHANICS spinal cofumn human locomotion in-vivo segmental kinematics motion analysis STEREOPHOTOGRAMMETRY kinematic coupling
下载PDF
Spatio-Temporal Kinematic Decomposition of Movements 被引量:1
20
作者 Dimitri Volchenkov Bettina E.Blasing Thomas Schack 《Engineering(科研)》 2014年第8期385-398,共14页
We propose the new experimental method for investigating and approximating the organization and structure of movements with given accuracy. The composition of approximating trajectories illuminating the movement trait... We propose the new experimental method for investigating and approximating the organization and structure of movements with given accuracy. The composition of approximating trajectories illuminating the movement traits discloses the level of movement expertise in dancers and golf players. The method allows estimating the level of movement expertise, drawing the detailed structure of movements, and classifying movements into a given repertoire automatically. 展开更多
关键词 kinematic Structure of Movements Spatio-Temporal kinematic Decomposition of Movement Complexity of Movements Complexity of Shape Changes Automated Classification of Movements
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部