期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
Kinematic modeling and analysis of novel eight-wheel lunar rover
1
作者 高海波 张朋 +1 位作者 邓宗全 胡明 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第6期751-755,共5页
A new kind of eight-wheel lunar rover is developed, which is a complex closed-chain system and has good capabilities of climbing slope, surmounting obstacles and adapting to uneven terrain. In this paper, the mechanic... A new kind of eight-wheel lunar rover is developed, which is a complex closed-chain system and has good capabilities of climbing slope, surmounting obstacles and adapting to uneven terrain. In this paper, the mechanical structure of the novel eight-wheel lunar rover is introduced, forward and inverse kinematic models of the rover are established according to the closed-chain coordinate transformation and instantaneous coincidence coordinate. Based on structural characteristics, its kinetic characteristics are analyzed. Wheel slippages are separated and calculated, and a method for closed-loop control modification using wheel slip estimation during the model establishment is proposed. The results can be applied to the motion control of lunar rover. 展开更多
关键词 kinematic modeling locomotion system eight-wheel lunar rover lunar rover
下载PDF
Core-drilling kinematic modeling and analysis of Jiaolong submersible manipulator
2
作者 Xu YANG Xin LIU +2 位作者 Shizhen LI Yugang REN Limin ZHU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CSCD 2023年第11期937-948,共12页
The complicated topographies of the deep sea pose significant challenges for the core drilling with the Jiaolong submersible manipulator.To address this problem,we proposed a core-drilling kinematic model and evaluate... The complicated topographies of the deep sea pose significant challenges for the core drilling with the Jiaolong submersible manipulator.To address this problem,we proposed a core-drilling kinematic model and evaluated the core-drilling behavior of the submersible manipulator by comprehensively considering the uncertain posture of the Jiaolong submersible.First,we established a forward kinematic model for the core-drilling task in deep sea,which satisfied the requirement of gravitational-direction core drilling.Based on the forward kinematic equations,we then built a double-redundancy inverse kinematic model,which was able to determine the required motion trajectories of six active joints according to the desired core-drilling trajectory.The core-drilling workspaces and the motions of the Jiaolong submersible manipulator were assessed with several calculation examples.The established forward and inverse kinematic models are constructed with clear analytic equations,and thus are directly applicable to the Jiaolong submersible manipulator-based core-drilling task. 展开更多
关键词 kinematic model Core drilling Jiaolong submersible manipulator Uncertain posture
原文传递
Kinematic-mapping-model-guided analysis and optimization of 2-PSS&1-RR circular-rail parallel mechanism for fully steerable phased array antennas
3
作者 Guodong Tan Xiangfei Meng +4 位作者 Xuechao Duan Lulu Cheng Dingchao Niu Shuai He Dan Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期136-154,共19页
This paper presents a systematic methodology for analyzing and optimizing an innovative antenna mount designed for phased array antennas, implemented through a novel 2-PSS&1-RR circular-rail parallel mechanism. In... This paper presents a systematic methodology for analyzing and optimizing an innovative antenna mount designed for phased array antennas, implemented through a novel 2-PSS&1-RR circular-rail parallel mechanism. Initially, a comparative motion analysis between the 3D model of the mount and its full-scale prototype is conducted to validate effectiveness. Given the inherent complexity, a kinematic mapping model is established between the mount and the crank-slider linkage, providing a guiding framework for subsequent analysis and optimization. Guided by this model, feasible inverse and forward solutions are derived, enabling precise identification of stiffness singularities. The concept of singularity distance is thus introduced to reflect the structural stiffness of the mount. Subsequently, also guided by the mapping model, a heuristic algorithm incorporating two backtracking procedures is developed to reduce the mount's mass. Additionally, a parametric finite-element model is employed to explore the relation between singularity distance and structural stiffness. The results indicate a significant reduction(about 16%) in the antenna mount's mass through the developed algorithm, while highlighting the singularity distance as an effective stiffness indicator for this type of antenna mount. 展开更多
关键词 Innovative antenna mount Circular rail kinematic mapping model Crank-slider linkage Stiffness singularity BACKTRACKING
下载PDF
Improved Stiffness Modeling for An Exechon‑Like Parallel Kinematic Machine(PKM)and Its Application 被引量:5
4
作者 Nanyan Shen Liang Geng +3 位作者 Jing Li Fei Ye Zhuang Yu Zirui Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第3期130-141,共12页
Hole drilling or contour milling for the large and complex workpieces such as automobile panels and aircraft fuselages makes a high combined demand on machining accuracy,stiffness and workspace of machining equipment.... Hole drilling or contour milling for the large and complex workpieces such as automobile panels and aircraft fuselages makes a high combined demand on machining accuracy,stiffness and workspace of machining equipment.Therefore,a 5-DOF(degrees of freedom)parallel kinematic machine(PKM)with redundant constraints is proposed.Based on the kinematics analysis of the parallel mechanism using intermediate variables,the kinematics problems of the PKM are solved through equivalent kinematics model.The structural stiffness matrix method is adopted to model the stiffness of the parallel mechanism of the PKM,where the stiffness of each joint and branch component is obtained by stiffness formula and finite element analysis.And the stiffness model of the parallel mechanism is improved by correction coefficient matrix,each element of which is constructed as a polynomial function of three independent end variables of the parallel mechanism.The terminal stiffness matrices obtained by simulation result are used to determine the coefficients of polynomial function by least square fitting to describe the correction coefficient over the workspace of the parallel mechanism quantitatively.The experiment results prove that the modification method can greatly improve the stiffness model of the parallel mechanism.To enhance the machining accuracy of the PKM,the proposed kinematics model and the improved stiffness model are utilized to optimize the working stiffness of parallel machine by searching the best relative position of parallel machine and workpiece.A plate workpiece taken as example is examined in the case study section,which demonstrates the effectiveness of optimization method. 展开更多
关键词 PKM 5-DOF Equivalent kinematics model Intermediate variables Stiffness correction coefficient Optimal working stiffness
下载PDF
Vehicle kinematics modeling and design of vehicle trajectory generator system 被引量:3
5
作者 李昭 蔡自兴 +2 位作者 任孝平 陈爱斌 薛志超 《Journal of Central South University》 SCIE EI CAS 2012年第10期2860-2865,共6页
A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajec... A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajectory generator for vehicle was proposed for more actual simulation.Firstly,a vehicle kinematics model was built based on conversion of attitude vector in different coordinate systems.Then,the principle of common trajectory generators was analyzed.Besides,combining the vehicle kinematics model with the principle of dead reckoning,a new vehicle trajectory generator was presented,which can provide process parameters of carrier anytime and achieve simulation of typical actions of running vehicle.Moreover,IMU(inertial measurement unit) elements were simulated,including accelerometer and gyroscope.After setting up the simulation conditions,the integrated navigation simulation system was verified by final performance test.The result proves the validity and flexibility of this design. 展开更多
关键词 vehicle kinematics model integrated navigation system track generator IMU element system simulation
下载PDF
Evolution of convex structure during counter-rotating electrochemical machining based on kinematic modeling 被引量:2
6
作者 Wenjian CAO Dengyong WANG +1 位作者 Zhiyuan REN Di ZHU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第3期39-49,共11页
Counter-rotating electrochemical machining(CRECM)is a novel electrochemical machining(ECM)method,which can be used to machine convex structures with complex shapes on the outer surface of casings.In this study,the evo... Counter-rotating electrochemical machining(CRECM)is a novel electrochemical machining(ECM)method,which can be used to machine convex structures with complex shapes on the outer surface of casings.In this study,the evolution of the convex structure during CRECM is studied.The complex motion form of CRECM is replaced by an equivalent kinematic model,in which the movement of the cathode tool is realized by matrix equations.The trajectory of the cathode tool center satisfies the Archimedes spiral equation,and the feed depth in adjacent cycles is a constant.The simulation results show that the variations of five quality indexes for the convex structure:as machining time increases,the height increases linearly,and the width reduces linearly,the fillets at the top and root fit the rational function,and the inclination angle of the convex satisfies the exponential function.The current density distributions with different rotation angles is investigated.Owing to the differential distribution of current density on workpiece surface,the convex is manufactured with the cathode window transferring into and out of the processing area.Experimental results agree very well with the simulation,which indicates that the proposed model is effective for prediction the evolution of the convex structure in CRECM. 展开更多
关键词 Convex structure Counter-rotating electrochemical machining Current density Equivalent kinematic model Material removal
原文传递
Kinematics modeling of a 6-PSS parallel mechanism with wide-range flexure hinges 被引量:1
7
作者 杜志江 史若冲 董为 《Journal of Central South University》 SCIE EI CAS 2012年第9期2482-2487,共6页
A novel 6-PSS flexible parallel mechanism was presented,which employed wide-range flexure hinges as passive joints.The proposed mechanism features micron level positioning accuracy over cubic centimeter scale workspac... A novel 6-PSS flexible parallel mechanism was presented,which employed wide-range flexure hinges as passive joints.The proposed mechanism features micron level positioning accuracy over cubic centimeter scale workspace.A three-layer back-propagation(BP) neural network was utilized to the kinematics analysis,in which learning samples containing 1 280 groups of data based on stiffness-matrix method were used to train the BP model.The kinematics performance was accurately calculated by using the constructed BP model with 19 hidden nodes.Compared with the stiffness model,the simulation and numerical results validate that BP model can achieve millisecond level computation time and micron level calculation accuracy.The concept and approach outlined can be extended to a variety of applications. 展开更多
关键词 flexible parallel manipulator wide-range flexure hinge kinematics model neural network
下载PDF
Dynamic Modeling and Investigation of Maneuver Characteristics of A Deep-Sea Manned Submarine Vehicle 被引量:3
8
作者 谢俊元 须文波 +2 位作者 张华 徐鹏飞 崔维成 《China Ocean Engineering》 SCIE EI 2009年第3期505-516,共12页
A deep-sea Manned Submarine Vehicle (MSV) is usually required to move at a low forward speed and a low rotational speed when it executes investigation tasks. In this condition, the motion is in large drift angles, a... A deep-sea Manned Submarine Vehicle (MSV) is usually required to move at a low forward speed and a low rotational speed when it executes investigation tasks. In this condition, the motion is in large drift angles, and the maneuverability hydrodynamic forces cannot be expressed properly in the conventional mathematical model of submersible motion. In this paper, firstly, a general equation of MSV with six-freedom motion is presented, and the numerical simulation of descent/ascent motion and helix motion is conducted to reveal the general maneuver characteristics of MSV. Secondly, according to the data of captive model tests of large drift angles of MSV, the regression analysis of position hydrodynamic forces and rotation hydrodynamic forces is carried out, and the results of regression analysis of maneuverability hydrody- namic characteristics are analyzed to reveal the special maneuver characteristics. Thirdly, a special new mathematical model of MSV with the whole range of drift angles motion is presented, which can be used to predict hydrodynamic performance of motion in the 0° - 180° range of drift angles. The results are applied to the design of maneuverability hydrodynamic forces, development of control system and simulator of a practical MSV. 展开更多
关键词 Manned Submarine Vehicle MSV) dynamic and kinematic modeling large drift angle numerical simulation
下载PDF
浮动基多机协调吊运系统的工作空间分析
9
作者 苏程 赵祥堂 +2 位作者 闫增祯 赵志刚 孟佳东 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第1期148-159,共12页
At present,the cranes used at sea have several shortcomings in terms of flexibility,efficiency,and safety.Therefore,a floating multi-robot coordinated lifting system is proposed to fulfill the offshore lifting require... At present,the cranes used at sea have several shortcomings in terms of flexibility,efficiency,and safety.Therefore,a floating multi-robot coordinated lifting system is proposed to fulfill the offshore lifting requirements.First,the structure of the lifting system is established according to the lifting task,the kinematic model of the system is developed by using the D–H coordinate transformation,and the dynamic model is developed based on rigid-body dynamics and hydrodynamics.Then,the static and dynamic workspace of the lifting system are analyzed,and the solving steps of the workspace are given by using the Monte–Carlo method.The effect of the load mass and the maximum allowable tension of the cable on the workspace is examined by simulation.Results show that the lifting system has limited carrying capacity and a data reference for selecting the structural parameters by analyzing the factors affecting the workspace.Findings provide a basis for further research on the optimal design of structural parameters and the determination of safe configurations of the lifting system. 展开更多
关键词 Offshore lifting Multi-robot system kinematic model Dynamic model Static workspace Dynamic workspace
下载PDF
Modeling and simulation of a mini AUV in spatial motion 被引量:6
10
作者 王波 万磊 +1 位作者 徐玉如 秦再白 《Journal of Marine Science and Application》 2009年第1期7-12,共6页
Accurate modeling and simulation of autonomous underwater vehicle (AUV) is essential for autonomous control and maneuverability research. In this paper, a mini AUV- "MAUV-Ⅱ" was researched and the nonlinear mathe... Accurate modeling and simulation of autonomous underwater vehicle (AUV) is essential for autonomous control and maneuverability research. In this paper, a mini AUV- "MAUV-Ⅱ" was researched and the nonlinear mathematic model of the AUV in spatial motion was derived based on momentum theorem. The forces acting on AUV were resolved to several modules which were expressed in matrix form. Based on the motion model and combined with virtual reality technology, a motion simulation system was constructed. Considering the characteristic of "MAUV-Ⅱ ", the heading control and depth control were simulated by adopting S-surface control method. A long distance traveling simulation experiment based on target planning was also done. The simulation results show that the "MAUV-Ⅱ" has good spatial maneuverability, and verify the feasibility and reliability of control software. 展开更多
关键词 AUV kinematics model dynamics model motion control SIMULATION
下载PDF
A Kinematic Thermal Model for Descending Slabs with Velocity Boundary Layers:A Case Study for the Tonga Subducting Slab 被引量:2
11
作者 ZHANG Keliang WEI Dongping 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第1期211-222,共12页
For the purpose of investigating the influence of metastable olivine(MO) phase transformations on both deep seismicity and stagnation of slabs,we constructed a 2-dimensional finite element thermal model for a 120 Ma... For the purpose of investigating the influence of metastable olivine(MO) phase transformations on both deep seismicity and stagnation of slabs,we constructed a 2-dimensional finite element thermal model for a 120 Ma-old 50°dipping oceanic lithosphere descending at 10 cm/yr with velocity boundary layers,which would mitigate the interference of constant velocity field for the slab. The resulting temperatures show that most of intermediate and deep earthquakes occurring within the Tonga slab are occurring inside the 800℃and 1200℃isotherm,respectively.The elevation of olivine transformation near~410 km and respective persistence of metastable olivine and spinel within the transition zone and beneath 660 km would thus result in bimodal positive,zonal,negative density anomalies,respectively.These results together with the resulting pressure anomalies may reflect the stress pattern of the Tonga slab:(i) slab pull force exerts above a depth of~230 km;(ii) MO existence changes the buoyancy force within the transition zone and facilitates slab stagnation at a depth of 660 km;(iii) as the subducting materials accumulated over 660 km,deepest earthquakes occur due to MO transformation;(iv) a flattened‘slab’ may penetrate into the lower mantle due to the density increment of Sp transformation. 展开更多
关键词 kinematic thermal model subduction zone velocity boundary layer metastable olivine double seismic zone finite element method
下载PDF
Anomaly detection method based on kinematics model and nonholonomic constraint of vehicle 被引量:1
12
作者 任孝平 蔡自兴 +1 位作者 陈白帆 余伶俐 《Journal of Central South University》 SCIE EI CAS 2011年第4期1128-1132,共5页
A method used to detect anomaly and estimate the state of vehicle in driving was proposed.The kinematics model of the vehicle was constructed and nonholonomic constraint conditions were added,which refer to that once ... A method used to detect anomaly and estimate the state of vehicle in driving was proposed.The kinematics model of the vehicle was constructed and nonholonomic constraint conditions were added,which refer to that once the vehicle encounters the faults that could not be controlled,the constraint conditions are violated.Estimation equations of the velocity errors of the vehicle were given out to estimate the velocity errors of side and forward.So the stability of the whole vehicle could be judged by the velocity errors of the vehicle.Conclusions were validated through the vehicle experiment.This method is based on GPS/INS integrated navigation system,and can provide foundation for fault detections in unmanned autonomous vehicles. 展开更多
关键词 kinematics model nonholonomic constraint error mapping state estimation
下载PDF
Parameter Identification and Application of Slippage Kinematics for Tracked Mobile Robots 被引量:1
13
作者 Hongyang Liu Jianzhong Wang Jian Gao 《Journal of Beijing Institute of Technology》 EI CAS 2019年第4期687-695,共9页
A new parameter identification method is proposed to solve the slippage problem when tracked mobile robots execute turning motions.Such motion is divided into two states in this paper:pivot turning and coupled turning... A new parameter identification method is proposed to solve the slippage problem when tracked mobile robots execute turning motions.Such motion is divided into two states in this paper:pivot turning and coupled turning between angular velocity and linear velocity.In the processing of pivot turning,the slippage parameters could be obtained by measuring the end point in a square path.In the process of coupled turning,the slippage parameters could be calculated by measuring the perimeter of a circular path and the linear distance between the start and end points.The identification results showed that slippage parameters were affected by velocity.Therefore,a fuzzy rule base was established with the basis on the identification data,and a fuzzy controller was applied to motion control and dead reckoning.This method effectively compensated for errors resulting in unequal tension between the left and right tracks,structural dimensions and slippage.The results demonstrated that the accuracy of robot positioning and control could be substantially improved on a rigid floor. 展开更多
关键词 tracked mobile robot tracked vehicle kinematics model slippage parameters fuzzy controller
下载PDF
Preliminary results on kinematic model of tectonic blocks derived from high precision GPS observations in Southwest China 被引量:1
14
作者 黄立人 马青 +2 位作者 朱文耀 程宗颐 熊永清 《Acta Seismologica Sinica(English Edition)》 CSCD 1997年第1期27-34,共8页
In the paper, the kinematic model of tectonic blocks in southwest China is studied based on the precision GPS observations carried out under the major subject of 'Studies on Current Crustal Movement and Geodynamic... In the paper, the kinematic model of tectonic blocks in southwest China is studied based on the precision GPS observations carried out under the major subject of 'Studies on Current Crustal Movement and Geodynamics' which belongs to the State Climbing Project. It is believed that at present, the data of high precision GPS observation may provide convincing information related to the horizontal movement of tectonic blocks in the Chinese mainland. The preliminary results obtained from the kinematic model have given some direct evidences for the research of dynamic mechanism of crustal deformation in the Chinese mainland and on the basis of which, the kinematic characteristics and their relations to the seismicity and seismic risk in the reobserved region are analysed. The preliminary observation results are encouraging. 展开更多
关键词 GPS observation Southwest China tectonic block kinematic model
下载PDF
Three-Dimensional Kinematics Simulation of Robot Fighting Platform in Virtual Environment 被引量:1
15
作者 王建中 朱礼尧 《Journal of Beijing Institute of Technology》 EI CAS 2010年第2期165-169,共5页
A method of 3 D kinematics simulation of robot fighting platform (RFP) in virtual environment is proposed with the aim of enhancing vision telepresence. Based on the theory of space coordinate transformation, kinema... A method of 3 D kinematics simulation of robot fighting platform (RFP) in virtual environment is proposed with the aim of enhancing vision telepresence. Based on the theory of space coordinate transformation, kinematics equat!ons of RFP are formulated; followed by applying a method of modeling using 3DMAX software to build an RFP's 3D geometric model before a 3D kinematics simulation system of RFP is completed based on virtual reality technology and Open Inventor VC + +. Test results have indicated that this system can perform RFP's kinematics simulation in virtual environment. It can also imitate RFP's motion states and environmental features well. Moreover, not only can better real-time performances and interactions be achieved but also operator's vision telepresence be enhanced, therefore this approach may help lay the foundation for the realization of RFP's teleoperation with vision telepresence. 展开更多
关键词 robot fight platform (RFP) kinematic model virtual reality vision telepresence
下载PDF
Magnetostrictive and Kinematic Model Considering the Dynamic Hysteresis and Energy Loss for GMA 被引量:3
16
作者 Huifang LIU Xingwei SUN +2 位作者 Yifei GAO Hanyu WANG Zijin GAO 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第2期241-255,共15页
Due to the influence of magnetic hysteresis and energy loss inherent in giant magnetostrictive materials (GMM), output displacement accuracy of giant magnetostrictive actuator (GMA) can not meet the precision and ... Due to the influence of magnetic hysteresis and energy loss inherent in giant magnetostrictive materials (GMM), output displacement accuracy of giant magnetostrictive actuator (GMA) can not meet the precision and ultra precision machining. Using a GMM rod as the core driving element, a GMA which may be used in the field of precision and ultra precision drive engineering is designed through modular design method. Based on the Armstrong theory and elastic Gibbs free energy theory, a nonlinear magnetostriction model which considers magnetic hysteresis and energy loss characteristics is established. Moreover, the mechanical system differential equation model for GMA is established by utilizing D'Alembert's principle. Experimental results show that the model can preferably predict magnetization property, magnetic potential orientation, energy loss for GMM. It is also able to describe magnetostrictive elongation and output displacement of GMA. Research results will provide a theoretical basis for solving the dynamic magnetic hysteresis, energy loss and working precision for GMA fundamentally. 展开更多
关键词 Giant magnetostrictive actuator · kinematic model · Magnetostrictive model · Magnetic hysteresis · Energy loss
下载PDF
A Generic Kinematic Model for Three Main Types of Five-axis Machine Tools 被引量:1
17
作者 YU Yang WEI Sheng-min +1 位作者 LIU Ping AO Zhi-qiang 《International Journal of Plant Engineering and Management》 2009年第4期243-249,共7页
Material removal is one of the most used processes in manufacturing. Five-axis CNC machines are believed to be the best tools in sculptured surface machining. In this study, a generic and unified kinematic model was d... Material removal is one of the most used processes in manufacturing. Five-axis CNC machines are believed to be the best tools in sculptured surface machining. In this study, a generic and unified kinematic model was developed as a viable alternative to the particular solutions that are only applicable to individual machine configurations. This versatile model is then used to verify the feasibility of the two rotational joints within the kinematic chain of three main types of a five-axis machine-tool. This versatile model is very useful applied to the design of five-axis machine tools. 展开更多
关键词 CNC machining of sculptured surfaces five-axis machine tool configuration kinematic model transformation matrix
下载PDF
Kinematic source model for simulation of near-fault ground motion field using explicit finite element method
18
作者 张晓志 胡进军 +1 位作者 谢礼立 王海云 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第1期19-28,共10页
This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the fi... This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the finite fault source modeling. A modified kinematic source model is presented, in which vibration with some high frequency components is introduced into the traditional slip time function to ensure that the source and ground motion include sufficient high frequency components. The model presented is verified through a simple modeling example. It is shown that the predicted near-fault ground motion field exhibits similar characteristics to those observed in strong motion records, such as the hanging wall effect, vertical effect, fling step effect and velocity pulse effect, etc. 展开更多
关键词 strong ground motion field explicit finite element numerical simulation kinematic source model
下载PDF
Human Body Modeling and Posture Simulating Based on 3D Surface Scan Data
19
作者 马永有 张辉 +1 位作者 任少云 蒋寿伟 《Journal of Donghua University(English Edition)》 EI CAS 2003年第3期51-56,共6页
This paper presents a new approach for modeling the human body by considering the motion state and the shape of whole body. The body model consists of a skeleton kinematic model and a surface model. The former is used... This paper presents a new approach for modeling the human body by considering the motion state and the shape of whole body. The body model consists of a skeleton kinematic model and a surface model. The former is used to determine the posture of the body,and the latter is used to generate the body shape according to the given posture. The body surface is reconstructed with multi-segment B-spline surfaces based on the 3D scan data from a real human body.Using only a few joints parameters and the original surface scan data, the various body postures and the shape can be generated easily. The model has a strong potential of being used for ergonomic design,garment design, virtual reality environment, as well as creating human animation, etc. 展开更多
关键词 Human body Geometric madding Surface reconstruction kinematic model Posture simulating
下载PDF
Anisotropic Constitutive Modeling of Compressible Biological Tissue
20
作者 Fuzhang Zhao 《Advances in Pure Mathematics》 2022年第5期357-373,共17页
The anisotropic continuum stored energy density (ACSED) functional is applied for accurate constitutive modeling of biological tissues and finite element implementation without the isochoric—volumetric split, the ani... The anisotropic continuum stored energy density (ACSED) functional is applied for accurate constitutive modeling of biological tissues and finite element implementation without the isochoric—volumetric split, the anisotropic—isotropic split, or the anisotropic invariant split. Related stress and elasticity tensors in the reference and current configurations are worked out. A new kinematic model is derived based on the tangent Poisson’s ratio as a cubic polynomial function of stretch. The ACSED model, along with the kinematic model, accurately fits uniaxial extension test data for compressible human skin, bovine articular cartilage, and human aorta samples. 展开更多
关键词 ACSED Functional Biological Tissue kinematic Model Nonlinear Elastic Deformation Tangent Poisson’s Ratio
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部