期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
The Early Mesozoic NE-SW Extensional Model and Exhumation Processes at the Southeastern Margin of the Central Asian Orogenic Belt:Insights from the Strain and Kinematic Vorticity Analysis of the Sonid Zuoqi Ductile Detachment Zone
1
作者 LI Jianbo SONG Zhijie +1 位作者 LEI Hengcong ZENG Tao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第5期1141-1153,共13页
The Sonid Zuoqi ductile detachment zone is located at the southeastern margin of the Central Asian orogenic belt(CAOB),striking EW and dipping to the S.The major rock type of the Sonid Zuoqi ductile detachment zone is... The Sonid Zuoqi ductile detachment zone is located at the southeastern margin of the Central Asian orogenic belt(CAOB),striking EW and dipping to the S.The major rock type of the Sonid Zuoqi ductile detachment zone is mylonite derived from granite.The sequence of mylonite features is:(1)S and C foliations of mylonite,and(2)extensional crenulation cleavage(ecc)or C′and the kinematic vorticity(Wk)value changed from 0.70 to 0.95 and from 0.37 to 0.69,respectively;the strain type of the mylonites within the Sonid Zuoqi ductile detachment zone is compressional to planar strain.The strong deformation mylonite and Halatu plutons yielded a zircon U-Pb age of 244 Ma and a zircon(U-Th)/He age of 214 Ma,respectively.Based on the strain and kinematic vorticity analysis,together with the zircon U-Pb and zircon(U-Th)/He ages and the regional tectonic background,the study area experienced three stage evolution:tangential simpleshear(244 Ma),simple-shear-dominated general shear represented by upper crustal extension(224 Ma)and pure-shear-dominated general shear represented by the Halatu pluton doming(214 Ma),which constrained the early Mesozoic NE-SW crustal extension at the southeastern margin of the CAOB.This NE-SW extension probably originated from the postorogenic extensional collapse of the CAOB,subsequent exhumation being controlled by the far afield effects of the closure of the Mongol-Okhotsk belt. 展开更多
关键词 STRAIN simple shear pure shear kinematic vorticity ductile detachment zone
下载PDF
Strain, Kinematic Vorticity and Ductile Thinning along the Detachment Zone of the Yunmeng Shan Metamorphic Core Complex, Beijing, China 被引量:3
2
作者 LI Jianbo WANG Tao +3 位作者 GUO Lei TONG Ying OUYANG Zhixia ZENG Tao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第4期989-1004,共16页
The Yunmeng Shan metamorphic core complex (MCC) is composed of the lower plate, the upper plate and the detachment zone. The detachment zone consists of ductile shear zone (mylonite zone), chloritized microbreccia... The Yunmeng Shan metamorphic core complex (MCC) is composed of the lower plate, the upper plate and the detachment zone. The detachment zone consists of ductile shear zone (mylonite zone), chloritized microbreccias zone and the brittle fault plane. The ductile shear zone contains mylonitic rocks, protomylonites, and mylonites. Finite strain measurements of feldspar porphyroclasts from those rocks using the Rf/φ method show that the strain intensities increase from mylonitic rocks (Es=0.66-0.72) to protomylonites (Es=0.66-0.83), and to mylonites (Es=0.71-1.2). The strain type is close to flatten strain. Kinematic vorticity estimated by Polar Mohr diagrams suggest that foliations and lineation of mylonite (0.47〈Wk〈0.85) record a bulk simple-dominated general shearing at the initial evolution stage of the Yunmeng Shan MCC's detachment zone; and the extensional crenulation cleavage(ecc) (0.34〈Wk〈0.77) recorded a bulk pure-dominated general shearing at the later stage of the evolution. Kinematic vorticity measurements also show that the Yunmeng Shan MCC detachment zone is a result of a combination of simple-dominated general shearing caused by crustal extension at the early stage and pure-dominated general shearing caused by MCC uplifting at the late stage. The ductile thinning estimated by finite strain measurements and estimation of Kinematic vorticity ranges from 52% to 82%, which is the minimum thining estimation. Our studies provide new evidence for mechanisms of the Yunmeng Shan MCC detachement zone. 展开更多
关键词 Yunmeng Shan MCC detachment zone MYLONITE STRAIN kinematic vorticity the ductilethinning
下载PDF
Modified k-ω model using kinematic vorticity for corner separation in compressor cascades 被引量:7
3
作者 LIU YangWei YAN Hao +3 位作者 FANG Le LULiPeng LI QiuShi SHAO Liang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第5期795-806,共12页
A new method of modifying the conventional k-w turbulence model for comer separation is proposed in this paper. The production term in the w equation is modified using kinematic vorticity considering fluid rotation an... A new method of modifying the conventional k-w turbulence model for comer separation is proposed in this paper. The production term in the w equation is modified using kinematic vorticity considering fluid rotation and deformation in complex geometric boundary conditions. The corner separation flow in linear compressor cascades is calculated using the original k-w model, the modified k-w model and the Reynolds stress model (RSM). The numerical results of the modified model are compared with the available experimental data, as well as the corresponding results of the original k-w model and RSM. In terms of accuracy, the modified model, which significantly improves the performance of the original k-w model for predicting comer separation, is quite competitive with the RSM. However, the modified model, which has considerably lower computational cost is more robust than the RSM. 展开更多
关键词 k-w comodel kinematic vorticity corner separation compressor cascades
原文传递
Deformation characteristics of granitic rocks in Erguna ductile shear zone,NE China
4
作者 NWABUEZE Ekene Chibuike LIANG Chenyue +3 位作者 SONG Zhiwei ZHAO jiaqi ENEZE Florence Ego ZHENG Changqing 《Global Geology》 2024年第2期63-75,共13页
The Erguna ductile shear zone is situated in the Erguna Massif,which has been exposed along the eastern bank of the Erguna River in northeastern China.The authors present comprehensive study results on the macro-and m... The Erguna ductile shear zone is situated in the Erguna Massif,which has been exposed along the eastern bank of the Erguna River in northeastern China.The authors present comprehensive study results on the macro-and micro-structures,finite strain and kinematic vorticity,quartz electron backscatter diffraction(EBSD)fabrics,and geochronology of granitic rocks in the Erguna ductile shear zone.The deformed granitic rocks have experienced significant SE-trending dextral strike-slip shearing.Finite strain and kinematic vorticity in all deformed granitic rocks indicate that the deformation is characterized by simple sheardominated general shearing with S-L tectonites.Mineral deformation behaviors and quartz C-axis textures demonstrate that the deformed granitic rocks developed under greenschist to amphibolite facies conditions at deformation temperatures ranging from 450 to 550℃.New LA-ICP-MS zircon U-Pb ages indicate that these granitic rocks were formed in Early Triassic(~248.6 Ma)and Early Cretaceous(~136.7 Ma).All the evidence indicates that this deformation may have occurred in Early Cretaceous and was related to the compression resulting from the final closure of the Mongol-Okhotsk Ocean. 展开更多
关键词 zircon U-Pb dating EBSD analysis finite strain kinematic vorticity Erguna ductile shear zone
下载PDF
Deformation Kinematics of Main Central Thrust Zone(MCTZ)in the Western Himalayas
5
作者 Mohsin Ahmad Ahanger Ghulam Jeelani 《Journal of Earth Science》 SCIE CAS CSCD 2022年第2期452-461,共10页
The main central thrust(MCT)is one of the major thrusts in Himalayas.In central Himalaya,MCT was defined as a contact between underlying Lesser Himalayan Sequence(LHS)and overlying higher Himalayan crystallines(HHC).H... The main central thrust(MCT)is one of the major thrusts in Himalayas.In central Himalaya,MCT was defined as a contact between underlying Lesser Himalayan Sequence(LHS)and overlying higher Himalayan crystallines(HHC).However,in the Kashmir Himalayas,the main central thrust zone(MCTZ),shear zone associated with MCT,is overlain by Kashmir Tethyan Sequence suggesting that the MCTZ has been deformed through a mechanism different than the mechanism responsible for MCTZ evolution in other parts of the Himalayas.In the present study we used structural,microfabric and kinematic analyses to investigate the deformation kinematics of MCTZ.Microstructural investigation revealed that the quartz in orthogneiss mylonites of MCTZ was dynamically recrystallized by grain boundary migration(GBM)and sub-grain rotation recrystallisation(SGR)with top-toSW sense of shear.The mean kinematic vorticity number(W;)just above the thrust ranges from 0.72to 0.84(40%–52%pure shear component)decreasing upwards to 0.65–0.71(35%–50%pure shear component).Deformation in the MCTZ is characterized by Rxzstrain ratio varying from 2.7 to 8.The present study suggested that the MCTZ suffered 3%–40%vertical shortening and 3%–66%transportparallel elongation.The results suggested that the HHC’s were not completely exhumed to the topographic surfaces in the Kashmir Himalayas.Along the basal decollement,i.e.,the main Himalayan thrust(MHT),the deformation continued until MCTZ reached the brittle-ductile transition where deformation mechanism changed to the brittle and the MCTZ rocks were transported to the surface through slip on brittle MCT. 展开更多
关键词 kinematicS MYLONITES finite strain mean kinematic vorticity number(Wm) general shear TECTONICS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部