Three complexes, [Pr(NO3)3(HL)2] (1), [Nd(NO3)3(HL)2] (2) and [Er(NO3)3(HL)2] ·0.5H2O (3), were synthesized from the reaction of a Schiff base ligand 2-[ (4-methylphenylimino)methyl ]-6-methox...Three complexes, [Pr(NO3)3(HL)2] (1), [Nd(NO3)3(HL)2] (2) and [Er(NO3)3(HL)2] ·0.5H2O (3), were synthesized from the reaction of a Schiff base ligand 2-[ (4-methylphenylimino)methyl ]-6-methoxyphenol (C15 H15 NO2, HL) with Ln(NO3)3·6H2O (Ln = Pr, Nd, Er). Characterization by single-crystal X-ray diffraction technique, elemental analysis, molar conductance, FT-IR, UV-Vis, ^1H NMR and thermal analysis shows the title complexes are neutral molecules where the central Ln( Ⅲ) ion is ten-coordinated in biapical anti-hexahedron prism geometry, with four oxygen atoms of the phenolic hydroxy and methoxy groups in the two bidentate Schiff base ligands and six oxygen atoms provided by the three bidentate NO3 - anions. Additionally, the kinetic mechanism of thermal decomposition of complex 3 was determined with a TG-DTG curves by both integral and differential methods. The functions of thermal decomposition reaction mechanism and the equation of kinetic compensation effect were obtained.展开更多
Thermal stability and thermal decomposition kinetics of 1-butyl-3-methylimidazolium dicyanamide ([bmin+][N(CN) ]2-) were investigated using both isothermal and non-isothermal thermogravimetric analyses (TGA) under hig...Thermal stability and thermal decomposition kinetics of 1-butyl-3-methylimidazolium dicyanamide ([bmin+][N(CN) ]2-) were investigated using both isothermal and non-isothermal thermogravimetric analyses (TGA) under high pure nitrogen as carrier gas. The long-term thermogravimetric studies revealed that the highest temperature used should be 110 °C, at which [bmin+][N(CN)2-] lost less than 10% by mass in 10 hours. The non-isothermal activation energy values determined using Friedman and ASTM methods were (150±13) and (147±2) kJ·mol –1 , respectively. Multivariate non-linear-regression methods showed that expanded Fn and CnB models were the best fit models with highest correlation coefficient of 0.9994, and the apparent activation energies were consistent with iso-conversional methods.展开更多
The title complex, Zn(C24H13NO)2Cl21, has been synthesized by the reaction of zinc chloride with Schiff base ligand N-salicylidene-p-toluidine and its structure was determined by single-crystal X-ray diffraction. Th...The title complex, Zn(C24H13NO)2Cl21, has been synthesized by the reaction of zinc chloride with Schiff base ligand N-salicylidene-p-toluidine and its structure was determined by single-crystal X-ray diffraction. The crystal is of monoclinic, space group Cc with a = 14.896(3), b = 12.506(2), c = 15.352(3) A,β = 114.711 (4)°, V = 2598.0(8) A^3, C28H26ZnCl2N2O2, Mr = 558.80, Z = 4, Dc = 1 .429 g/cm^3,μ = 1.179 mm^-1, Flack parameter = 0.027(19), F(000) = 1152, R = 0.0709 and wR = 0.1041 for 3117 observed reflections (Ⅰ 〉 2σ(Ⅰ)). In complex 1, the center Zn ion is four-coordinated by two O atoms from two Schiff base ligands and two Cl atoms in a distorted tetrahedral geometry. Additionally, the thermal decomposition of complex 1 as well as its kinetic mechanisms and equations is studied under the non-isothermal integral and differential methods in air by TG-DTG curves.展开更多
The title complex, formulated as Co(tda)(5-mphen)(H2O)(H2tda=thiodiglycolic acid, 5-mphen= 5-methyl-1,10-phenanthroline), was synthesized and characterized by elemental analysis, IR spectroscopy, X-ray single ...The title complex, formulated as Co(tda)(5-mphen)(H2O)(H2tda=thiodiglycolic acid, 5-mphen= 5-methyl-1,10-phenanthroline), was synthesized and characterized by elemental analysis, IR spectroscopy, X-ray single crystal diffraction, and TG-DTG techniques. The complex crystallized in monoclinic space group C2/c, with parameters of a=1.8142(2) nm, b=0.78251(9) nm, c=2.4624(3) nm,β=93.809(2)°, V=3.4880(7) nm^3, Z=8, Dc=1.579 g/cm^3, the final R indices[1〉2σ(1)] are R1=0.0469, wR2=0.1021, R indices for all data are R1=0.0835, wR2=0.1169. The central Co^2+ cation is coordinated in a distorted octahedral geometry with the ligand tda, 5-mphen, and water molecule. The coordination complex possesses a three-dimensional framework by means of hydrogen bonds and π-π stacking interactions. According to TG-DTG curves, the possible thermal decomposition mechanisms, the possible kinetic parameters, and equation of dehydration stage of the complex are obtained, that is, Ea=110.98 kJ/mol, lg(A/s^-1)=8.554, da/dT= 10^8.5546/β.3(1-α)[-1n(1-α)]^2/3.exp(-13349/T), respectively.展开更多
文摘Three complexes, [Pr(NO3)3(HL)2] (1), [Nd(NO3)3(HL)2] (2) and [Er(NO3)3(HL)2] ·0.5H2O (3), were synthesized from the reaction of a Schiff base ligand 2-[ (4-methylphenylimino)methyl ]-6-methoxyphenol (C15 H15 NO2, HL) with Ln(NO3)3·6H2O (Ln = Pr, Nd, Er). Characterization by single-crystal X-ray diffraction technique, elemental analysis, molar conductance, FT-IR, UV-Vis, ^1H NMR and thermal analysis shows the title complexes are neutral molecules where the central Ln( Ⅲ) ion is ten-coordinated in biapical anti-hexahedron prism geometry, with four oxygen atoms of the phenolic hydroxy and methoxy groups in the two bidentate Schiff base ligands and six oxygen atoms provided by the three bidentate NO3 - anions. Additionally, the kinetic mechanism of thermal decomposition of complex 3 was determined with a TG-DTG curves by both integral and differential methods. The functions of thermal decomposition reaction mechanism and the equation of kinetic compensation effect were obtained.
基金Supported by the National Natural Science Foundation of China (20703014) the Outstanding Youth Foundation of HenanProvince (074100510005)
文摘Thermal stability and thermal decomposition kinetics of 1-butyl-3-methylimidazolium dicyanamide ([bmin+][N(CN) ]2-) were investigated using both isothermal and non-isothermal thermogravimetric analyses (TGA) under high pure nitrogen as carrier gas. The long-term thermogravimetric studies revealed that the highest temperature used should be 110 °C, at which [bmin+][N(CN)2-] lost less than 10% by mass in 10 hours. The non-isothermal activation energy values determined using Friedman and ASTM methods were (150±13) and (147±2) kJ·mol –1 , respectively. Multivariate non-linear-regression methods showed that expanded Fn and CnB models were the best fit models with highest correlation coefficient of 0.9994, and the apparent activation energies were consistent with iso-conversional methods.
文摘The title complex, Zn(C24H13NO)2Cl21, has been synthesized by the reaction of zinc chloride with Schiff base ligand N-salicylidene-p-toluidine and its structure was determined by single-crystal X-ray diffraction. The crystal is of monoclinic, space group Cc with a = 14.896(3), b = 12.506(2), c = 15.352(3) A,β = 114.711 (4)°, V = 2598.0(8) A^3, C28H26ZnCl2N2O2, Mr = 558.80, Z = 4, Dc = 1 .429 g/cm^3,μ = 1.179 mm^-1, Flack parameter = 0.027(19), F(000) = 1152, R = 0.0709 and wR = 0.1041 for 3117 observed reflections (Ⅰ 〉 2σ(Ⅰ)). In complex 1, the center Zn ion is four-coordinated by two O atoms from two Schiff base ligands and two Cl atoms in a distorted tetrahedral geometry. Additionally, the thermal decomposition of complex 1 as well as its kinetic mechanisms and equations is studied under the non-isothermal integral and differential methods in air by TG-DTG curves.
基金Supported by the National Natrual Science Foundation of China(No.20771089)
文摘The title complex, formulated as Co(tda)(5-mphen)(H2O)(H2tda=thiodiglycolic acid, 5-mphen= 5-methyl-1,10-phenanthroline), was synthesized and characterized by elemental analysis, IR spectroscopy, X-ray single crystal diffraction, and TG-DTG techniques. The complex crystallized in monoclinic space group C2/c, with parameters of a=1.8142(2) nm, b=0.78251(9) nm, c=2.4624(3) nm,β=93.809(2)°, V=3.4880(7) nm^3, Z=8, Dc=1.579 g/cm^3, the final R indices[1〉2σ(1)] are R1=0.0469, wR2=0.1021, R indices for all data are R1=0.0835, wR2=0.1169. The central Co^2+ cation is coordinated in a distorted octahedral geometry with the ligand tda, 5-mphen, and water molecule. The coordination complex possesses a three-dimensional framework by means of hydrogen bonds and π-π stacking interactions. According to TG-DTG curves, the possible thermal decomposition mechanisms, the possible kinetic parameters, and equation of dehydration stage of the complex are obtained, that is, Ea=110.98 kJ/mol, lg(A/s^-1)=8.554, da/dT= 10^8.5546/β.3(1-α)[-1n(1-α)]^2/3.exp(-13349/T), respectively.