Based on the statistical analysis of blocking effect arising from anisotropic growth,the anisotropic effect on the kinetics of solid-state transformation was investigated.The result shows that the blocking effect lead...Based on the statistical analysis of blocking effect arising from anisotropic growth,the anisotropic effect on the kinetics of solid-state transformation was investigated.The result shows that the blocking effect leads to the retardation of transformation and then a regular behavior of varying Avrami exponent.Following previous analytical model,the formulations of Avrami exponent and effective activation energy accounting for blocking effect were obtained.The anisotropic effect on the transformation depends on two factors,non-blocking factor γ and blocking scale k,which directly acts on the dimensionality of growth.The effective activation energy is not affected by the anisotropic effect.The evolution of anisotropic effect with the fraction transformed is taken into account,showing that the anisotropic effect is more severe at the middle stage of transformation.展开更多
The kinetics of the reversible martensitic transformation in a Cu-Zn-Al-Mn-Ni shape memory alloy has been studied by means of differential scanning calorimetry.The apparent activation energy has been calculated and th...The kinetics of the reversible martensitic transformation in a Cu-Zn-Al-Mn-Ni shape memory alloy has been studied by means of differential scanning calorimetry.The apparent activation energy has been calculated and the kinetic equations of positive and adverse martensitic transformation have been established with the variations of temperature and time.展开更多
The hot compression tests using Gleeble 1500 were performed by varying the true strain up to 1.6 (80% reduction) in Nbfree and Nb-microalloyed steels. The effect of Nb addition on the transformation kinetics during ...The hot compression tests using Gleeble 1500 were performed by varying the true strain up to 1.6 (80% reduction) in Nbfree and Nb-microalloyed steels. The effect of Nb addition on the transformation kinetics during deformation of undercooled austenite was investigated. It was found that as compared with Nb-free steel, the transformation incubation period of Nb-bearing steel was prolonged and the transformation kinetics curves parallelly moved to higher strain because of the solute Nb drag effect. Studies on kinetics also showed that the deformation-enhanced ferrite transformation (DEFT) of the two steels were composed of three stages, which can be expressed by the J-M-A equations individually. However, the parameter n related to the mode of nucleation and growth is somewhat different in the first and second stages of the two steels, and the same in the third stage for both the steels corresponding to the nucleation Of retained austenite.展开更多
The aging precipitation behavior in solution treated Cu-Ni-Si-Cr alloy has been studied in terms of the analyses of the variations in electrical conductivity. On the basis of the linear relationship between the electr...The aging precipitation behavior in solution treated Cu-Ni-Si-Cr alloy has been studied in terms of the analyses of the variations in electrical conductivity. On the basis of the linear relationship between the electrical conductivity and the volume fraction of the precipitates, the phase transformation kinetics equation was deduced from the Avrami empiricai formula. On the basis of this equation, transformation kinetics curves corresponding to 5% and 50% transformation were established.展开更多
The aged and quenched microstructures of both alloys, Ti-42at-%Al and Ti-45at -%Al,homogenized in the disordered single phase field. were investigated And the results show that the quinched microstructure is a supersa...The aged and quenched microstructures of both alloys, Ti-42at-%Al and Ti-45at -%Al,homogenized in the disordered single phase field. were investigated And the results show that the quinched microstructure is a supersaturated single phase of ordered 22. When the supersaturated phase is aged in the two phase range at 1273 and 1373 K, it will transform to a lamellar microstructure of γ+α2. with a discontinuous decomposition mechanism in Ti-42at-%Al alloy and a semicontinuous decomposition mechanism in T1-45at-%Al alloy. With the methods of quantitative metallograph examination and X-ray diffraction analysis. the relationship between the amount of γ, phase precipitation and the time of isothermal transformation is agreed展开更多
The phase transformation kinetics of pearlite to austenite in low alloy steel containing RE was studied by the methods of DSC. The results show that the apparent transformation activation energy of pearlite to austeni...The phase transformation kinetics of pearlite to austenite in low alloy steel containing RE was studied by the methods of DSC. The results show that the apparent transformation activation energy of pearlite to austenite in the low alloy steel is 1141.04 kJ·mol -1, and the transformation activation energy of pearlite to austenite decreases with increasing of the volume fraction of transformation phase. Through which, the relationship curve between the volume fraction of transformation phase and the temperature were drawn.展开更多
Based on the assumptions of parabolic variation of nucleation rate versus time and transformation kinetics depending mainly on nucleation rate, a different model for bainitic transformation kinetics in hypoeutectoid s...Based on the assumptions of parabolic variation of nucleation rate versus time and transformation kinetics depending mainly on nucleation rate, a different model for bainitic transformation kinetics in hypoeutectoid steels was established. And this model was proved to be effective in the description of bainitic transformation by comparison with the result of conventional Avrami equation.展开更多
An orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore using(NH_4)_2SO_4. The optimized reaction conditions are defined as an(NH_4)_2SO_4/zinc molar ratio of 1.4:1, a roasting ...An orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore using(NH_4)_2SO_4. The optimized reaction conditions are defined as an(NH_4)_2SO_4/zinc molar ratio of 1.4:1, a roasting temperature of 440°C, and a thermostatic time of 60 min. The molar ratio of(NH_4)_2SO_4/zinc is the most predominant factor and the roasting temperature is the second significant factor that governs the zinc extraction. Thermogravimetric-differential thermal analysis was used for(NH_4)_2SO_4 and zinc mixed in a molar ratio of 1.4:1 at the heating rates of 5, 10, 15, and 20 K·min-1. Two strong endothermic peaks indicate that the complex chemical reactions occur at approximately 290°C and 400°C. XRD analysis was employed to examine the transformations of mineral phases during roasting process. Kinetic parameters, including reaction apparent activation energy, reaction order, and frequency factor, were calculated by the Doyle-Ozawa and Kissinger methods. Corresponding to the two endothermic peaks, the kinetic equations were obtained.展开更多
On the thermodynamics basis of regular solution sub-lattice model and soperelement model, kinetics basis of Cahn's transformation kinetics theory, and according to Scheil's additivity rule and eoperimental res...On the thermodynamics basis of regular solution sub-lattice model and soperelement model, kinetics basis of Cahn's transformation kinetics theory, and according to Scheil's additivity rule and eoperimental results obtained by thermal dilation method,a prediction model of transformations from hot-deformed austenite to ferrite, pearlite and bainite in low alloy steels, which could be applied to continuoas cooling process, is developed. The calculated transformed junctions of each phase based on laboratory controlled rolling and controlled cooling conditions in a low alloy steel are in reasonable agreement with the measured ones.展开更多
It is of great importance for obtaining the perfect welding properties to control the acicular ferrite (AF) transformation behavior reasonably in steel weld. AF continuous transformation kinetics in the HSLA steel wel...It is of great importance for obtaining the perfect welding properties to control the acicular ferrite (AF) transformation behavior reasonably in steel weld. AF continuous transformation kinetics in the HSLA steel weld was calculated and modeled based on the direct growth on the inclusions inert interface. The simulation results are coincident with the experimental value well.展开更多
The phase field method has been mainly used to simulate the growth of a single crystal in the past. But polycrystalline materials predominate in engineering. In this work, a phase field model for multigrain solidifica...The phase field method has been mainly used to simulate the growth of a single crystal in the past. But polycrystalline materials predominate in engineering. In this work, a phase field model for multigrain solidification is developed, which takes into account the random crystallographic orientations of crystallites and preserves the rotational invariance of the free energy. The morphological evolution of equiaxial multigrain solidification is predicted and the effect of composition on transformation kinetics is studied. The numerical results indicate that due to the soft impingement of grains the Avrami exponent varies with the initial melt composition and the solidification fraction.展开更多
On the basis of transformation kinetics and thermodynamics, the austenite-ferrite transformation start temperature during deformation was predicted for several grades of low-carbon steels under different processing co...On the basis of transformation kinetics and thermodynamics, the austenite-ferrite transformation start temperature during deformation was predicted for several grades of low-carbon steels under different processing conditions. Results indicate that Ar3d temperature mostly depended on alloying composition and processing parameters. Ar3d increased as strain rate or strain increased for the same steel grade. In view of enhancement of deformation on transformation, the basic kinetics model was established to simulate deformation induced transformation behavior, using which the influence of the deformation stored energy and effective deformation ledge on the nucleation and growth can be considered. The simulated results are in good agreement with experiment results.展开更多
Microstructure evolution during deformation of undercooled austenite at 760℃ was investigated in Nb-microalloyed steel by using SEM (scanning electron microscope), TEM (transmission electron microscope), and EBSD...Microstructure evolution during deformation of undercooled austenite at 760℃ was investigated in Nb-microalloyed steel by using SEM (scanning electron microscope), TEM (transmission electron microscope), and EBSD (electron backscattered diffraction). It is indicated that during deformation-enhanced ferrite transformation (DEFT) in Nb-microalloyed steel, the incubation period is prolonged, and the higher strain is needed to accomplish ferrite transformation. Therefore, the transformation kinetics curves move to high strain parallelly; and the transformation kinetics curves of Nb-microalloyed steel can be divided into three stages. At the fast stage, the solute drag effect of Nb and the consumption of strain energy for the dynamic precipitation of Nb(CN) led to a long incubation period, and at the second stage, ferrite transformation was accelerated significantly and fine Nb(CN) precipitates restrict the grain growth of ferrite effectively. The results also showed that DEFT in Nb-microalloyed steel is still a nucleation dominated process, and during the microstructure evolution the interchange of 〈001〉 and 〈111〉 texture was obtained.展开更多
By combining the α/γ interface migration and the carbon diffusion at the interface in Fe-C alloys, a mathematical model is constructed to describe the mixed-control mechanism for proeutectoid ferrite formation from ...By combining the α/γ interface migration and the carbon diffusion at the interface in Fe-C alloys, a mathematical model is constructed to describe the mixed-control mechanism for proeutectoid ferrite formation from austenite. In this model, the α/γ interface is treated as non-equilibrium interface, i.e., the carbon concentration of austenite at γ/α interface is obtained through theoretical calculation, instead of that assumed as the local equilibrium concentration. For isothermal precipitation of ferrite in Fe-C alloys, the calculated results show that the rate of interface migration decreases monotonically during the whole process, while the rate of carbon diffusion from γ/α interface into austenite increases to a peak value and then decreases. The process of ferrite growth may be considered as composed of three stages: the period of rapid growth, slow growth and finishing stage. The results also show that the carbon concentration of austenite at γ/α interface could not reach the thermodynamic equilibrium value even at the last stage of ferrite growth.展开更多
The reduction of high-chromium vanadium–titanium magnetite as a typical titanomagnetite containing 0.95wt% V2O5 and 0.61wt% Cr2O3 by H2–CO–CO2 gas mixtures was investigated from 1223 to 1373 K. Both the reduction d...The reduction of high-chromium vanadium–titanium magnetite as a typical titanomagnetite containing 0.95wt% V2O5 and 0.61wt% Cr2O3 by H2–CO–CO2 gas mixtures was investigated from 1223 to 1373 K. Both the reduction degree and reduction rate increase with increasing temperature and increasing hydrogen content. At a temperature of 1373 K, an H2/CO ratio of 5/2 by volume, and a reduction time of 40 min, the degree of reduction reaches 95%. The phase transformation during reduction is hypothesized to proceed as follows: Fe2O3 → Fe3O4 → FeO → Fe; Fe9 TiO 15 + Fe2Ti3O9 → Fe2.75Ti0.25O4 → FeT iO 3 → TiO 2;(Cr0.15V0.85)2O3 → Fe2VO4; and Cr1.3Fe0.7O3 → FeC r2O4. The reduction is controlled by the mixed internal diffusion and interfacial reaction at the initial stage; however, the interfacial reaction is dominant. As the reduction proceeds, the internal diffusion becomes the controlling step.展开更多
The effect of austempering time after the bainitic transformation on the microstructure and property in a low-carbon bainite steel was investigated by metallography and dilatometry. The results showed that by prolongi...The effect of austempering time after the bainitic transformation on the microstructure and property in a low-carbon bainite steel was investigated by metallography and dilatometry. The results showed that by prolonging the austempering time after the bainite transformation, the amount of large-size martensite/austenite islands decreased, but no significant change of the amount and morphology of bainite were observed. In addition, more austenite with a high carbon content was retained by prolonging the holding time at the bainite transformation temperature.Moreover, with a longer holding time, the elongation was improved at the expense of a small decrease in tensile strength. Finally, the Avrami equation B(RF) = 1-exp(-0.0499 × t^0.7616) for bainite reaction at 350℃ was obtained for the tested steel. The work provided a reference for tailoring the properties of low-carbon steels.展开更多
Returning biochar to soil is a heavily researched topic because biochar functions well for soil improvement. There is a significant loss of nutrients, which occurs during biochar preparation before biochar is returned...Returning biochar to soil is a heavily researched topic because biochar functions well for soil improvement. There is a significant loss of nutrients, which occurs during biochar preparation before biochar is returned to soil,thereby seriously undermining biochar's efficacy. Therefore, the transformation mechanisms of biochar p H,mass, nutrients and metals during pyrolysis under different atmospheres and temperatures were studied such that the best method for biochar preparation could be developed. Several conclusions can be reached:(1) a CO2 atmosphere is better than a N2 atmosphere for biochar preparation, although preparation in a CO2 atmosphere is not a common practice for biochar producers;(2) 350 ℃is the best temperature for biochar preparation because the amount of nutrient loss is notably low based on the premise of straw transferred into biochar; and(3) transforming mechanisms of pH, N, P and K are also involved in the biochar preparation process.展开更多
Conventional kinetics theory for diffusion-controlled phase transformation shows that the reverse transition should lag behind the temperature rise through rapid heating,i.e.,overheating is required.In this work,we fo...Conventional kinetics theory for diffusion-controlled phase transformation shows that the reverse transition should lag behind the temperature rise through rapid heating,i.e.,overheating is required.In this work,we found that theβ-transus temperature decreased by∼50℃ during studying theα→βtransformation in Ti-6Al-4V alloy via electropulsing treatment(EPT).The calculation suggests that the acceleration of transformation kinetics cannot be fully explained by Joule heat and athermal effects of the electromigration effect and electron wind theory.The microstructural evolution during EPT was systematically investigated utilizing scanning electron microscope(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),transmission Kikuchi diffraction(TKD),and transmission electron micro-scope(TEM).Microscopic analysis shows that the nano-sizedωand O'phases formed in theβphase,which causes large numbers of lattice distortion regions.The defects are conducive to accelerating the bulk diffusion of alloying elements inβ.Moreover,the nanodomains limited the growth of martensite,therefore nanocrystalline martensite formed after quenching.These findings develop the understanding of the destructive effect of current on metallic crystal,which will help to guide microstructural regulation in titanium and other alloys.展开更多
On the basis of superelement model, Cahn’s transformation kinetics theory and Scheil’s additivity rule, the CCT diagrams and transformation kinetics in low carbon steel were predicted considering both undeformed and...On the basis of superelement model, Cahn’s transformation kinetics theory and Scheil’s additivity rule, the CCT diagrams and transformation kinetics in low carbon steel were predicted considering both undeformed and deformed conditions. The influence of deformation on phase equilibria and transformation incubation period was evaluated quantitatively. The recrystallization kinetics and the evolution of dislocation density were calculated during continuous cooling. The results show deformation considerably shortens transformation incubation period, accelerates transformation kinetics and makes CCT curve shift leftwards. The calculated CCT diagrams and the volume fraction of each phase are in good agreement with measurements.展开更多
On the basis of transformation thermodynamics and kinetics theories,an algorithm for predicting ferrite grain size after continuous cooling transformation from deformed austenite to ferrite is suggested.The calculated...On the basis of transformation thermodynamics and kinetics theories,an algorithm for predicting ferrite grain size after continuous cooling transformation from deformed austenite to ferrite is suggested.The calculated results of computer simulation with the algorithm are in so good agreement with the measured ones in controlled rolling and controlled cooling experiments that the theoretical algorithm is feasible.展开更多
基金Project (2011CB610403) supported by the National Basic Research Program of ChinaProject (51125002) supported by the National Funds for Distinguished Young Scientists of China+2 种基金Project (51071127) supported by the National Natural Science Foundation of ChinaProjects (09-QZ-2008,24-TZ-2009) supported by the Free Research Fund of State Key Laboratory of Solidification Processing,ChinaProject (CX201008) supported by the Doctorate Foundation of Northwestern Polytechnical University,China
文摘Based on the statistical analysis of blocking effect arising from anisotropic growth,the anisotropic effect on the kinetics of solid-state transformation was investigated.The result shows that the blocking effect leads to the retardation of transformation and then a regular behavior of varying Avrami exponent.Following previous analytical model,the formulations of Avrami exponent and effective activation energy accounting for blocking effect were obtained.The anisotropic effect on the transformation depends on two factors,non-blocking factor γ and blocking scale k,which directly acts on the dimensionality of growth.The effective activation energy is not affected by the anisotropic effect.The evolution of anisotropic effect with the fraction transformed is taken into account,showing that the anisotropic effect is more severe at the middle stage of transformation.
文摘The kinetics of the reversible martensitic transformation in a Cu-Zn-Al-Mn-Ni shape memory alloy has been studied by means of differential scanning calorimetry.The apparent activation energy has been calculated and the kinetic equations of positive and adverse martensitic transformation have been established with the variations of temperature and time.
基金This work was financially supported by the National High-Tech Research and Development Program of China (No.2001AA332020).
文摘The hot compression tests using Gleeble 1500 were performed by varying the true strain up to 1.6 (80% reduction) in Nbfree and Nb-microalloyed steels. The effect of Nb addition on the transformation kinetics during deformation of undercooled austenite was investigated. It was found that as compared with Nb-free steel, the transformation incubation period of Nb-bearing steel was prolonged and the transformation kinetics curves parallelly moved to higher strain because of the solute Nb drag effect. Studies on kinetics also showed that the deformation-enhanced ferrite transformation (DEFT) of the two steels were composed of three stages, which can be expressed by the J-M-A equations individually. However, the parameter n related to the mode of nucleation and growth is somewhat different in the first and second stages of the two steels, and the same in the third stage for both the steels corresponding to the nucleation Of retained austenite.
基金This work was supported by the National High Technology Research Project“863"under Grant No.2002AA331112by the Major Science&Technology Project of Henan Province,China,under Grant No.0122021300.
文摘The aging precipitation behavior in solution treated Cu-Ni-Si-Cr alloy has been studied in terms of the analyses of the variations in electrical conductivity. On the basis of the linear relationship between the electrical conductivity and the volume fraction of the precipitates, the phase transformation kinetics equation was deduced from the Avrami empiricai formula. On the basis of this equation, transformation kinetics curves corresponding to 5% and 50% transformation were established.
文摘The aged and quenched microstructures of both alloys, Ti-42at-%Al and Ti-45at -%Al,homogenized in the disordered single phase field. were investigated And the results show that the quinched microstructure is a supersaturated single phase of ordered 22. When the supersaturated phase is aged in the two phase range at 1273 and 1373 K, it will transform to a lamellar microstructure of γ+α2. with a discontinuous decomposition mechanism in Ti-42at-%Al alloy and a semicontinuous decomposition mechanism in T1-45at-%Al alloy. With the methods of quantitative metallograph examination and X-ray diffraction analysis. the relationship between the amount of γ, phase precipitation and the time of isothermal transformation is agreed
文摘The phase transformation kinetics of pearlite to austenite in low alloy steel containing RE was studied by the methods of DSC. The results show that the apparent transformation activation energy of pearlite to austenite in the low alloy steel is 1141.04 kJ·mol -1, and the transformation activation energy of pearlite to austenite decreases with increasing of the volume fraction of transformation phase. Through which, the relationship curve between the volume fraction of transformation phase and the temperature were drawn.
文摘Based on the assumptions of parabolic variation of nucleation rate versus time and transformation kinetics depending mainly on nucleation rate, a different model for bainitic transformation kinetics in hypoeutectoid steels was established. And this model was proved to be effective in the description of bainitic transformation by comparison with the result of conventional Avrami equation.
基金financially supported by the National Natural Science Foundation of China(Nos.51204054 and 51574084)the Fundamental Research Funds for the Central Universities of China(No.N150204009)the National Basic Research Priorities Program of China(No.2014CB643405)
文摘An orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore using(NH_4)_2SO_4. The optimized reaction conditions are defined as an(NH_4)_2SO_4/zinc molar ratio of 1.4:1, a roasting temperature of 440°C, and a thermostatic time of 60 min. The molar ratio of(NH_4)_2SO_4/zinc is the most predominant factor and the roasting temperature is the second significant factor that governs the zinc extraction. Thermogravimetric-differential thermal analysis was used for(NH_4)_2SO_4 and zinc mixed in a molar ratio of 1.4:1 at the heating rates of 5, 10, 15, and 20 K·min-1. Two strong endothermic peaks indicate that the complex chemical reactions occur at approximately 290°C and 400°C. XRD analysis was employed to examine the transformations of mineral phases during roasting process. Kinetic parameters, including reaction apparent activation energy, reaction order, and frequency factor, were calculated by the Doyle-Ozawa and Kissinger methods. Corresponding to the two endothermic peaks, the kinetic equations were obtained.
文摘On the thermodynamics basis of regular solution sub-lattice model and soperelement model, kinetics basis of Cahn's transformation kinetics theory, and according to Scheil's additivity rule and eoperimental results obtained by thermal dilation method,a prediction model of transformations from hot-deformed austenite to ferrite, pearlite and bainite in low alloy steels, which could be applied to continuoas cooling process, is developed. The calculated transformed junctions of each phase based on laboratory controlled rolling and controlled cooling conditions in a low alloy steel are in reasonable agreement with the measured ones.
基金the financial support of this research by the Youth Scientist Innovation Foundation of Petroleum Science and Technology(Grant No.2002CX05)by A Foundation for the Author of National Excellent Doctoral Dissertation of P.R.China(Grant No.200233)by the National SCience Foundation of China(Grant No.50334050).
文摘It is of great importance for obtaining the perfect welding properties to control the acicular ferrite (AF) transformation behavior reasonably in steel weld. AF continuous transformation kinetics in the HSLA steel weld was calculated and modeled based on the direct growth on the inclusions inert interface. The simulation results are coincident with the experimental value well.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50395103 and 50271057).
文摘The phase field method has been mainly used to simulate the growth of a single crystal in the past. But polycrystalline materials predominate in engineering. In this work, a phase field model for multigrain solidification is developed, which takes into account the random crystallographic orientations of crystallites and preserves the rotational invariance of the free energy. The morphological evolution of equiaxial multigrain solidification is predicted and the effect of composition on transformation kinetics is studied. The numerical results indicate that due to the soft impingement of grains the Avrami exponent varies with the initial melt composition and the solidification fraction.
基金This work was financially supported by the High Technology Development Program(No.2001AA339030)the National Nat ural Science Foundation of China(No.50100404).
文摘On the basis of transformation kinetics and thermodynamics, the austenite-ferrite transformation start temperature during deformation was predicted for several grades of low-carbon steels under different processing conditions. Results indicate that Ar3d temperature mostly depended on alloying composition and processing parameters. Ar3d increased as strain rate or strain increased for the same steel grade. In view of enhancement of deformation on transformation, the basic kinetics model was established to simulate deformation induced transformation behavior, using which the influence of the deformation stored energy and effective deformation ledge on the nucleation and growth can be considered. The simulated results are in good agreement with experiment results.
基金This work was financially supported by the National High-Tech Research and Development Program of China ("863" Program)(No.2001AA332020).
文摘Microstructure evolution during deformation of undercooled austenite at 760℃ was investigated in Nb-microalloyed steel by using SEM (scanning electron microscope), TEM (transmission electron microscope), and EBSD (electron backscattered diffraction). It is indicated that during deformation-enhanced ferrite transformation (DEFT) in Nb-microalloyed steel, the incubation period is prolonged, and the higher strain is needed to accomplish ferrite transformation. Therefore, the transformation kinetics curves move to high strain parallelly; and the transformation kinetics curves of Nb-microalloyed steel can be divided into three stages. At the fast stage, the solute drag effect of Nb and the consumption of strain energy for the dynamic precipitation of Nb(CN) led to a long incubation period, and at the second stage, ferrite transformation was accelerated significantly and fine Nb(CN) precipitates restrict the grain growth of ferrite effectively. The results also showed that DEFT in Nb-microalloyed steel is still a nucleation dominated process, and during the microstructure evolution the interchange of 〈001〉 and 〈111〉 texture was obtained.
基金This work was supported by the National Natural Science Foundation of China under grant No.50075053the Emphasized Item of Development Funds of Science and Technology of Shanghai City,China(No.03H201).
文摘By combining the α/γ interface migration and the carbon diffusion at the interface in Fe-C alloys, a mathematical model is constructed to describe the mixed-control mechanism for proeutectoid ferrite formation from austenite. In this model, the α/γ interface is treated as non-equilibrium interface, i.e., the carbon concentration of austenite at γ/α interface is obtained through theoretical calculation, instead of that assumed as the local equilibrium concentration. For isothermal precipitation of ferrite in Fe-C alloys, the calculated results show that the rate of interface migration decreases monotonically during the whole process, while the rate of carbon diffusion from γ/α interface into austenite increases to a peak value and then decreases. The process of ferrite growth may be considered as composed of three stages: the period of rapid growth, slow growth and finishing stage. The results also show that the carbon concentration of austenite at γ/α interface could not reach the thermodynamic equilibrium value even at the last stage of ferrite growth.
基金financially supported by the National Natural Science Foundation of China (No. 51090384)the National High-Tech Research and Development Program of China (No. 2012AA062302)the Fundamental Research Funds for the Central Universities of China (Nos. N110202001 and N130602003)
文摘The reduction of high-chromium vanadium–titanium magnetite as a typical titanomagnetite containing 0.95wt% V2O5 and 0.61wt% Cr2O3 by H2–CO–CO2 gas mixtures was investigated from 1223 to 1373 K. Both the reduction degree and reduction rate increase with increasing temperature and increasing hydrogen content. At a temperature of 1373 K, an H2/CO ratio of 5/2 by volume, and a reduction time of 40 min, the degree of reduction reaches 95%. The phase transformation during reduction is hypothesized to proceed as follows: Fe2O3 → Fe3O4 → FeO → Fe; Fe9 TiO 15 + Fe2Ti3O9 → Fe2.75Ti0.25O4 → FeT iO 3 → TiO 2;(Cr0.15V0.85)2O3 → Fe2VO4; and Cr1.3Fe0.7O3 → FeC r2O4. The reduction is controlled by the mixed internal diffusion and interfacial reaction at the initial stage; however, the interfacial reaction is dominant. As the reduction proceeds, the internal diffusion becomes the controlling step.
基金the financial supports from the National Natural Science Foundation of China(NSFC)(Nos.51874216 and 51704217)the Major Projects of Technology Innovation of Hubei Province,China(No.2017AAA116)
文摘The effect of austempering time after the bainitic transformation on the microstructure and property in a low-carbon bainite steel was investigated by metallography and dilatometry. The results showed that by prolonging the austempering time after the bainite transformation, the amount of large-size martensite/austenite islands decreased, but no significant change of the amount and morphology of bainite were observed. In addition, more austenite with a high carbon content was retained by prolonging the holding time at the bainite transformation temperature.Moreover, with a longer holding time, the elongation was improved at the expense of a small decrease in tensile strength. Finally, the Avrami equation B(RF) = 1-exp(-0.0499 × t^0.7616) for bainite reaction at 350℃ was obtained for the tested steel. The work provided a reference for tailoring the properties of low-carbon steels.
基金Supported by the National Natural Science Foundation of China(No.41571283)
文摘Returning biochar to soil is a heavily researched topic because biochar functions well for soil improvement. There is a significant loss of nutrients, which occurs during biochar preparation before biochar is returned to soil,thereby seriously undermining biochar's efficacy. Therefore, the transformation mechanisms of biochar p H,mass, nutrients and metals during pyrolysis under different atmospheres and temperatures were studied such that the best method for biochar preparation could be developed. Several conclusions can be reached:(1) a CO2 atmosphere is better than a N2 atmosphere for biochar preparation, although preparation in a CO2 atmosphere is not a common practice for biochar producers;(2) 350 ℃is the best temperature for biochar preparation because the amount of nutrient loss is notably low based on the premise of straw transferred into biochar; and(3) transforming mechanisms of pH, N, P and K are also involved in the biochar preparation process.
基金Financial support from the National Key Research and Development Program of China(Nos.2020YFB008300,2020YFB008303,and 2020YFB008304)Provincial Natural Science Foundation of Shandong(No.ZR202102220408)+1 种基金National Natural Science Foundation of China(No.51701080)Talent Development Excellent Young Talents Fund Project China(No.20190103053JH).
文摘Conventional kinetics theory for diffusion-controlled phase transformation shows that the reverse transition should lag behind the temperature rise through rapid heating,i.e.,overheating is required.In this work,we found that theβ-transus temperature decreased by∼50℃ during studying theα→βtransformation in Ti-6Al-4V alloy via electropulsing treatment(EPT).The calculation suggests that the acceleration of transformation kinetics cannot be fully explained by Joule heat and athermal effects of the electromigration effect and electron wind theory.The microstructural evolution during EPT was systematically investigated utilizing scanning electron microscope(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),transmission Kikuchi diffraction(TKD),and transmission electron micro-scope(TEM).Microscopic analysis shows that the nano-sizedωand O'phases formed in theβphase,which causes large numbers of lattice distortion regions.The defects are conducive to accelerating the bulk diffusion of alloying elements inβ.Moreover,the nanodomains limited the growth of martensite,therefore nanocrystalline martensite formed after quenching.These findings develop the understanding of the destructive effect of current on metallic crystal,which will help to guide microstructural regulation in titanium and other alloys.
基金National Key Basic Research and Development Programme of China(No.G199806150).
文摘On the basis of superelement model, Cahn’s transformation kinetics theory and Scheil’s additivity rule, the CCT diagrams and transformation kinetics in low carbon steel were predicted considering both undeformed and deformed conditions. The influence of deformation on phase equilibria and transformation incubation period was evaluated quantitatively. The recrystallization kinetics and the evolution of dislocation density were calculated during continuous cooling. The results show deformation considerably shortens transformation incubation period, accelerates transformation kinetics and makes CCT curve shift leftwards. The calculated CCT diagrams and the volume fraction of each phase are in good agreement with measurements.
文摘On the basis of transformation thermodynamics and kinetics theories,an algorithm for predicting ferrite grain size after continuous cooling transformation from deformed austenite to ferrite is suggested.The calculated results of computer simulation with the algorithm are in so good agreement with the measured ones in controlled rolling and controlled cooling experiments that the theoretical algorithm is feasible.