The Z component and X component profiles of seismic waves extracted with the prestack Kirchhoff integral migration could approximate to the primary wave (P wave) and converted shear wave (PS wave) profiles under c...The Z component and X component profiles of seismic waves extracted with the prestack Kirchhoff integral migration could approximate to the primary wave (P wave) and converted shear wave (PS wave) profiles under certain conditions. The relative change of their reflection amplitude reflects the formation stress anomaly and subsurface media anisotropy. The principle and method for extracting amplitude ratios were studied and the application of amplitude ratio profiles was also examined when processing and interpreting actual seismic data. The amplitude ratio profile is an effective supplementary means of identifying the stratigraphic boundary and lithology.展开更多
Angle-domain common-image gathers(ADCIGs) are the basic data in migration velocity analysis(MVA) and amplitude variation with angle(AVA) analysis. We propose a common-angle gather-generating scheme using Kirchho...Angle-domain common-image gathers(ADCIGs) are the basic data in migration velocity analysis(MVA) and amplitude variation with angle(AVA) analysis. We propose a common-angle gather-generating scheme using Kirchhoff PSDM based on the traveltime gradient field. The scheme includes three major operations:(1) to calculate the traveltime field of the source and the receiver based on the dynamic programming approach;(2) to obtain the refl ection angle according to the traveltime gradient field in the image space; and(3) to generate the ADCIGs during the migration process. Because of the computation approach, the method for generating ADCIGs is superior to conventional ray-based methods. We use the proposed ADCIGs generation method in 3D large-scale seismic data. The key points of the method are the following.(1) We use common-shot datasets for migration,(2) we load traveltimes based on the shot aperture, and(3) we use the MPI and Open Mp memory sharing to decrease the amount of input and output(I/O). Numerical examples using synthetic data suggest that the ADCIGs improve the quality of the velocity and the effectiveness of the 3D angle-gather generation scheme.展开更多
To the most of velocity fields, the traveltimes of the first break that seismic waves propagate along rays can be computed on a 2-D or 3-D numerical grid by finite-difference extrapolation. Under ensuring accuracy, t...To the most of velocity fields, the traveltimes of the first break that seismic waves propagate along rays can be computed on a 2-D or 3-D numerical grid by finite-difference extrapolation. Under ensuring accuracy, to improve calculating efficiency and adaptability, the calculation method of first-arrival traveltime of finite-difference is de- rived based on any rectangular grid and a local plane wavefront approximation. In addition, head waves and scat- tering waves are properly treated and shadow and caustic zones cannot be encountered, which appear in traditional ray-tracing. The testes of two simple models and the complex Marmousi model show that the method has higher accuracy and adaptability to complex structure with strong vertical and lateral velocity variation, and Kirchhoff prestack depth migration based on this method can basically achieve the position imaging effects of wave equation prestack depth migration in major structures and targets. Because of not taking account of the later arrivals energy, the effect of its amplitude preservation is worse than that by wave equation method, but its computing efficiency is higher than that by total Green′s function method and wave equation method.展开更多
文摘The Z component and X component profiles of seismic waves extracted with the prestack Kirchhoff integral migration could approximate to the primary wave (P wave) and converted shear wave (PS wave) profiles under certain conditions. The relative change of their reflection amplitude reflects the formation stress anomaly and subsurface media anisotropy. The principle and method for extracting amplitude ratios were studied and the application of amplitude ratio profiles was also examined when processing and interpreting actual seismic data. The amplitude ratio profile is an effective supplementary means of identifying the stratigraphic boundary and lithology.
基金funded by the National Basic Research Program of China(973 Program)(No.2011 CB201002)the National Natural Science Foundation of China(No.41374117)the great and special projects(No.2011ZX05003-003,2011ZX05005-005-008 HZ,and 2011ZX05006-002)
文摘Angle-domain common-image gathers(ADCIGs) are the basic data in migration velocity analysis(MVA) and amplitude variation with angle(AVA) analysis. We propose a common-angle gather-generating scheme using Kirchhoff PSDM based on the traveltime gradient field. The scheme includes three major operations:(1) to calculate the traveltime field of the source and the receiver based on the dynamic programming approach;(2) to obtain the refl ection angle according to the traveltime gradient field in the image space; and(3) to generate the ADCIGs during the migration process. Because of the computation approach, the method for generating ADCIGs is superior to conventional ray-based methods. We use the proposed ADCIGs generation method in 3D large-scale seismic data. The key points of the method are the following.(1) We use common-shot datasets for migration,(2) we load traveltimes based on the shot aperture, and(3) we use the MPI and Open Mp memory sharing to decrease the amount of input and output(I/O). Numerical examples using synthetic data suggest that the ADCIGs improve the quality of the velocity and the effectiveness of the 3D angle-gather generation scheme.
基金National Natural Science Foundation of China (49894190-024) and Geophysical Prospecting Key Laboratory Foundation of China National Petroleum Corporation.
文摘To the most of velocity fields, the traveltimes of the first break that seismic waves propagate along rays can be computed on a 2-D or 3-D numerical grid by finite-difference extrapolation. Under ensuring accuracy, to improve calculating efficiency and adaptability, the calculation method of first-arrival traveltime of finite-difference is de- rived based on any rectangular grid and a local plane wavefront approximation. In addition, head waves and scat- tering waves are properly treated and shadow and caustic zones cannot be encountered, which appear in traditional ray-tracing. The testes of two simple models and the complex Marmousi model show that the method has higher accuracy and adaptability to complex structure with strong vertical and lateral velocity variation, and Kirchhoff prestack depth migration based on this method can basically achieve the position imaging effects of wave equation prestack depth migration in major structures and targets. Because of not taking account of the later arrivals energy, the effect of its amplitude preservation is worse than that by wave equation method, but its computing efficiency is higher than that by total Green′s function method and wave equation method.