Incident particles in the Klein tunnel phenomenon in quantum mechanics can pass a very high potential barrier.Introducing the concept of tunneling into the analysis of phononic crystals can broaden the application pro...Incident particles in the Klein tunnel phenomenon in quantum mechanics can pass a very high potential barrier.Introducing the concept of tunneling into the analysis of phononic crystals can broaden the application prospects.In this study,the structure of the unit cell is designed,and the low frequency(<1 k Hz)valley locked waveguide is realized through the creation of a phononic crystal plate with a topological phase transition interface.The defect immunity of the topological waveguide is verified,that is,the wave can propagate along the original path in the cases of impurities and disorder.Then,the tunneling phenomenon is introduced into the topological valley-locked waveguide to analyze the wave propagation,and its potential applications(such as signal separators and logic gates)are further explored by designing phononic crystal plates.This research has broad application prospects in information processing and vibration control,and potential applications in other directions are also worth exploring.展开更多
In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infin...In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.展开更多
The Metric of a graph plays an essential role in the arrangement of different dimensional structures and finding their basis in various terms.The metric dimension of a graph is the selection of the minimum possible nu...The Metric of a graph plays an essential role in the arrangement of different dimensional structures and finding their basis in various terms.The metric dimension of a graph is the selection of the minimum possible number of vertices so that each vertex of the graph is distinctively defined by its vector of distances to the set of selected vertices.This set of selected vertices is known as the metric basis of a graph.In applied mathematics or computer science,the topic of metric basis is considered as locating number or locating set,and it has applications in robot navigation and finding a beacon set of a computer network.Due to the vast applications of this concept in computer science,optimization problems,and also in chemistry enormous research has been conducted.To extend this research to a four-dimensional structure,we studied the metric basis of the Klein bottle and proved that the Klein bottle has a constant metric dimension for the variation of all its parameters.Although the metric basis is variying in 3 and 4 values when the values of its parameter change,it remains constant and unchanged concerning its order or number of vertices.The methodology of determining the metric basis or locating set is based on the distances of a graph.Therefore,we proved the main theorems in distance forms.展开更多
Adomian decomposition is a semi-analytical approach to solving ordinary and partial differential equations. This study aims to apply the Adomian Decomposition Technique to obtain analytic solutions for linear and nonl...Adomian decomposition is a semi-analytical approach to solving ordinary and partial differential equations. This study aims to apply the Adomian Decomposition Technique to obtain analytic solutions for linear and nonlinear time-fractional Klein-Gordon equations. The fractional derivatives are computed according to Caputo. Examples are provided. The findings show the explicitness, efficacy, and correctness of the used approach. Approximate solutions acquired by the decomposition method have been numerically assessed, given in the form of graphs and tables, and then these answers are compared with the actual solutions. The Adomian decomposition approach, which was used in this study, is a widely used and convergent method for the solutions of linear and non-linear time fractional Klein-Gordon equation.展开更多
In this paper, a coupling of the natural transform method and the Admoian decomposition method called the natural transform decomposition method (NTDM), is utilized to solve the linear and nonlinear time-fractional Kl...In this paper, a coupling of the natural transform method and the Admoian decomposition method called the natural transform decomposition method (NTDM), is utilized to solve the linear and nonlinear time-fractional Klein-Gordan equation. The (NTDM), is introduced to derive the approximate solutions in series form for this equation. Solutions have been drawn for several values of the time power. To identify the strength of the method, three examples are presented.展开更多
基金supported by the National Natural Science Foundation of China(No.12172297)the Open Foundation of State Key Laboratory of Structural Analysis for Industrial Equipment of China(No.GZ22106)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University of China(No.CX2023055)。
文摘Incident particles in the Klein tunnel phenomenon in quantum mechanics can pass a very high potential barrier.Introducing the concept of tunneling into the analysis of phononic crystals can broaden the application prospects.In this study,the structure of the unit cell is designed,and the low frequency(<1 k Hz)valley locked waveguide is realized through the creation of a phononic crystal plate with a topological phase transition interface.The defect immunity of the topological waveguide is verified,that is,the wave can propagate along the original path in the cases of impurities and disorder.Then,the tunneling phenomenon is introduced into the topological valley-locked waveguide to analyze the wave propagation,and its potential applications(such as signal separators and logic gates)are further explored by designing phononic crystal plates.This research has broad application prospects in information processing and vibration control,and potential applications in other directions are also worth exploring.
文摘In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.
文摘The Metric of a graph plays an essential role in the arrangement of different dimensional structures and finding their basis in various terms.The metric dimension of a graph is the selection of the minimum possible number of vertices so that each vertex of the graph is distinctively defined by its vector of distances to the set of selected vertices.This set of selected vertices is known as the metric basis of a graph.In applied mathematics or computer science,the topic of metric basis is considered as locating number or locating set,and it has applications in robot navigation and finding a beacon set of a computer network.Due to the vast applications of this concept in computer science,optimization problems,and also in chemistry enormous research has been conducted.To extend this research to a four-dimensional structure,we studied the metric basis of the Klein bottle and proved that the Klein bottle has a constant metric dimension for the variation of all its parameters.Although the metric basis is variying in 3 and 4 values when the values of its parameter change,it remains constant and unchanged concerning its order or number of vertices.The methodology of determining the metric basis or locating set is based on the distances of a graph.Therefore,we proved the main theorems in distance forms.
文摘Adomian decomposition is a semi-analytical approach to solving ordinary and partial differential equations. This study aims to apply the Adomian Decomposition Technique to obtain analytic solutions for linear and nonlinear time-fractional Klein-Gordon equations. The fractional derivatives are computed according to Caputo. Examples are provided. The findings show the explicitness, efficacy, and correctness of the used approach. Approximate solutions acquired by the decomposition method have been numerically assessed, given in the form of graphs and tables, and then these answers are compared with the actual solutions. The Adomian decomposition approach, which was used in this study, is a widely used and convergent method for the solutions of linear and non-linear time fractional Klein-Gordon equation.
文摘In this paper, a coupling of the natural transform method and the Admoian decomposition method called the natural transform decomposition method (NTDM), is utilized to solve the linear and nonlinear time-fractional Klein-Gordan equation. The (NTDM), is introduced to derive the approximate solutions in series form for this equation. Solutions have been drawn for several values of the time power. To identify the strength of the method, three examples are presented.