The global solution for a coupled nonlinear Klein-Gordon system in two- dimensional space was studied. First, a sharp threshold of blowup and global existence for the system was obtained by constructing a type of cros...The global solution for a coupled nonlinear Klein-Gordon system in two- dimensional space was studied. First, a sharp threshold of blowup and global existence for the system was obtained by constructing a type of cross-constrained variational problem and establishing so-called cross-invariant manifolds of the evolution flow. Then the result of how small the initial data for which the solution exists globally was proved by using the scaling argument.展开更多
Consider quadratic quasi-linear Klein-Gordon systems with eventually different masses for small, smooth, compactly supported Cauchy data in one space dimension. It is proved that the global existence holds when a conv...Consider quadratic quasi-linear Klein-Gordon systems with eventually different masses for small, smooth, compactly supported Cauchy data in one space dimension. It is proved that the global existence holds when a convenient null condition is satisfied by nonlinearities.展开更多
In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infin...In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.展开更多
An innovative local artificial boundary condition is proposed to numerically solve the Cauchy problem of the Klein-Gordon equation in an unbounded domain.Initially,the equation is considered as the axial wave prop-aga...An innovative local artificial boundary condition is proposed to numerically solve the Cauchy problem of the Klein-Gordon equation in an unbounded domain.Initially,the equation is considered as the axial wave prop-agation in a bar supported on a spring foundation.The numerical model is then truncated by replacing the half-infinitely long bar with an equivalent mechanical structure.The effective frequency-dependent stiffness of the half-infinitely long bar is expressed as the sum of rational terms using Pade approximation.For each term,a corresponding substructure composed of dampers and masses is constructed.Finally,the equivalent mechan-ical structure is obtained by parallelly connecting these substructures.The proposed approach can be easily implemented within a standard finite element framework by incorporating additional mass points and damper elements.Numerical examples show that with just a few extra degrees of freedom,the proposed approach effec-tively suppresses artificial reflections at the truncation boundary and exhibits first-order convergence.展开更多
Adomian decomposition is a semi-analytical approach to solving ordinary and partial differential equations. This study aims to apply the Adomian Decomposition Technique to obtain analytic solutions for linear and nonl...Adomian decomposition is a semi-analytical approach to solving ordinary and partial differential equations. This study aims to apply the Adomian Decomposition Technique to obtain analytic solutions for linear and nonlinear time-fractional Klein-Gordon equations. The fractional derivatives are computed according to Caputo. Examples are provided. The findings show the explicitness, efficacy, and correctness of the used approach. Approximate solutions acquired by the decomposition method have been numerically assessed, given in the form of graphs and tables, and then these answers are compared with the actual solutions. The Adomian decomposition approach, which was used in this study, is a widely used and convergent method for the solutions of linear and non-linear time fractional Klein-Gordon equation.展开更多
In this paper, a coupling of the natural transform method and the Admoian decomposition method called the natural transform decomposition method (NTDM), is utilized to solve the linear and nonlinear time-fractional Kl...In this paper, a coupling of the natural transform method and the Admoian decomposition method called the natural transform decomposition method (NTDM), is utilized to solve the linear and nonlinear time-fractional Klein-Gordan equation. The (NTDM), is introduced to derive the approximate solutions in series form for this equation. Solutions have been drawn for several values of the time power. To identify the strength of the method, three examples are presented.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10271084)the Natural Science Foundation for Young Scholars of Sichuan Province of China (No.07JQ0094)
文摘The global solution for a coupled nonlinear Klein-Gordon system in two- dimensional space was studied. First, a sharp threshold of blowup and global existence for the system was obtained by constructing a type of cross-constrained variational problem and establishing so-called cross-invariant manifolds of the evolution flow. Then the result of how small the initial data for which the solution exists globally was proved by using the scaling argument.
文摘Consider quadratic quasi-linear Klein-Gordon systems with eventually different masses for small, smooth, compactly supported Cauchy data in one space dimension. It is proved that the global existence holds when a convenient null condition is satisfied by nonlinearities.
文摘In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.
基金supported by the National Natural Science Foundation of China(Grant Nos.11832001 and 11702046).
文摘An innovative local artificial boundary condition is proposed to numerically solve the Cauchy problem of the Klein-Gordon equation in an unbounded domain.Initially,the equation is considered as the axial wave prop-agation in a bar supported on a spring foundation.The numerical model is then truncated by replacing the half-infinitely long bar with an equivalent mechanical structure.The effective frequency-dependent stiffness of the half-infinitely long bar is expressed as the sum of rational terms using Pade approximation.For each term,a corresponding substructure composed of dampers and masses is constructed.Finally,the equivalent mechan-ical structure is obtained by parallelly connecting these substructures.The proposed approach can be easily implemented within a standard finite element framework by incorporating additional mass points and damper elements.Numerical examples show that with just a few extra degrees of freedom,the proposed approach effec-tively suppresses artificial reflections at the truncation boundary and exhibits first-order convergence.
文摘Adomian decomposition is a semi-analytical approach to solving ordinary and partial differential equations. This study aims to apply the Adomian Decomposition Technique to obtain analytic solutions for linear and nonlinear time-fractional Klein-Gordon equations. The fractional derivatives are computed according to Caputo. Examples are provided. The findings show the explicitness, efficacy, and correctness of the used approach. Approximate solutions acquired by the decomposition method have been numerically assessed, given in the form of graphs and tables, and then these answers are compared with the actual solutions. The Adomian decomposition approach, which was used in this study, is a widely used and convergent method for the solutions of linear and non-linear time fractional Klein-Gordon equation.
文摘In this paper, a coupling of the natural transform method and the Admoian decomposition method called the natural transform decomposition method (NTDM), is utilized to solve the linear and nonlinear time-fractional Klein-Gordan equation. The (NTDM), is introduced to derive the approximate solutions in series form for this equation. Solutions have been drawn for several values of the time power. To identify the strength of the method, three examples are presented.