This study aims to explore the formation mechanism of ethyl acetate and organic acids in acid rice soup(rice-acid soup)inoculated with Kluyveromyces marxianus L1-1 through the complementary analysis of transcriptome a...This study aims to explore the formation mechanism of ethyl acetate and organic acids in acid rice soup(rice-acid soup)inoculated with Kluyveromyces marxianus L1-1 through the complementary analysis of transcriptome and proteome.The quantity of K.marxianus L1-1 varied significantly in the fermentation process of rice-acid soup and the first and third days were the two key turning points in the growth phase of K.marxianus L1-1.Importantly,the concentrations of ethyl acetate,ethanol,acetic acid,and L-lactic acid increased from day 1 to day 3.At least 4231 genes and 2937 proteins were identified and 610 differentially expressed proteins were annotated to 30 Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways based on the analysis results of transcriptome and proteome.The key genes and proteins including up-regulated alcohol dehydrogenase family,alcohol O-acetyltransferase,acetyl-CoA C-acetyltransferase,acyl-coenzyme A thioester hydrolase,and down-regulated aldehyde dehydrogenase family were involved in glycolysis/gluconeogenesis pathways,starch and sucrose metabolism pathways,amino sugar and nucleotide sugar metabolism pathways,tricarboxylic acid(TCA)cycle,and pyruvate metabolism pathways,thus promoting the formation of ethyl acetate,organic acids,alcohols,and other esters.Our results revealed the formation mechanisms of ethyl acetate and organic acids in rice-acid soup inoculated with K.marxianus L1-1.展开更多
Compared with the rice-acid soup inoculated with single starter,the synergistically intensifi ed rice-acid soup inoculated with Lactobacillus paracasei H4-11(L.paracasei H4-11)and Kluyveromyces marxianus L1-1(K.marxia...Compared with the rice-acid soup inoculated with single starter,the synergistically intensifi ed rice-acid soup inoculated with Lactobacillus paracasei H4-11(L.paracasei H4-11)and Kluyveromyces marxianus L1-1(K.marxianus L1-1)contained more fl avor compounds.Organic acids mainly included L-lactic acid and the main volatile fl avor component was ethyl acetate.Moreover,the signal intensity of astringency and bitterness and the total concentration of volatile sulfur compounds were reduced.The combined analysis results of RNA sequencing(RNA-seq)technology and 4D label-free quantitative(4D LFQ)proteomics explained the fl avor formation pathways in rice-acid soup inoculated with L.paracasei H4-11 and K.marxianus L1-1.In L.paracasei H4-11,L-lactate dehydrogenase,phosphoglucomutase,acetate kinase,alcohol dehydrogenase and acetyl-CoA were up-regulated and D-lactate dehydrogenase and N-Acetyltransferase were down-regulated.In K.marxianus L1-1,Acetyl-CoA,acetaldehyde dehydrogenase,acyl-coenzyme A,N-acetyltransferase,and L-lactate dehydrogenase were up-regulated and hexokinase,alcohol dehydrogenase,and alcohol O-acetyltransferase were down-regulated.The above up-regulation and down-regulation synergistically promoted the formation of characteristic fl avor compounds(mainly L-lactic acid and ethyl acetate).Enzyme-linked immunoassay(ELISA)and parallel reaction monitoring(PRM)quantitative analysis respectively verifi ed that 5 key metabolic enzymes and 27 proteins in L.paracasei H4-11 and K.marxianus L1-1 were associated with the characteristic fl avor of rice-acid soup,as confi rmed by the quantitative results of 4D LFQ.展开更多
脆壁克鲁维酵母(Kluyveromycesfragilis)LFS 8611合成的β D 半乳糖苷酶具有较高的催化半乳糖基转移反应活力.脆壁克鲁维酵母(K.fragilis)LFS 8611细胞生长和β D 半乳糖苷酶的合成同步.该菌株生长和产酶的最适碳源为半乳糖,乳糖次之;...脆壁克鲁维酵母(Kluyveromycesfragilis)LFS 8611合成的β D 半乳糖苷酶具有较高的催化半乳糖基转移反应活力.脆壁克鲁维酵母(K.fragilis)LFS 8611细胞生长和β D 半乳糖苷酶的合成同步.该菌株生长和产酶的最适碳源为半乳糖,乳糖次之;最适氮源为蛋白胨F403;最适培养条件为:发酵培养基的初始pH值为7.0,摇床的转速为200r/min.培养基中碳源和氮源质量浓度对菌体生物量和β D 半乳糖苷酶活力有重要影响,以12mg/mL乳糖为碳源,16mg/mL蛋白胨(F403)为氮源,在最适培养条件下培养32h后,菌体生物量和β D 半乳糖苷酶活力分别为7.56g/L和18.83U/mL.展开更多
Response surface methodology was applied to optimize medium components for production of recombinant calf chymosin by Kluyveromyces lactis GG799.The previous data indicated that the most suitable carbon source,nitroge...Response surface methodology was applied to optimize medium components for production of recombinant calf chymosin by Kluyveromyces lactis GG799.The previous data indicated that the most suitable carbon source,nitrogen source,salt and vitamin were glucose,yeast extract,KH2PO4 and Ca D-Pantothenate,respectively.The concentration of four media components were optimized by using central composite design of response surface methodology.The optimum medium composition for recombinant calf chymosin production was found to contain glucose 29.84 g· L-1,yeast extract 19.85 g·L-1,KH2PO4 0.1 g·L-1 and Ca D-Pantothenate 4.49 mg·L-1.The enzyme activity of recombinant calf chymosin was 722 U· mL-1,which was in an excellent agreement with the predicted value(723 U·mL-1).The production of recombinant calf chymosin from Kluyveromyces lactis GG799 was effectively increased by response surface methodology.展开更多
基金financially supported by National Natural Science Foundation of China (32060530)Guizhou University, Gui Da Te Gang He Zi (2022) 39, Technology platform and talent team plan of Guizhou. China ((2018)5251)+2 种基金Graduate Research Fund Project of Guizhou (YJSCXJH(2019]028)Industry-University-Research Cooperation Project of Guizhou (701/700465172217)China Scholarship Council (201906670006)
文摘This study aims to explore the formation mechanism of ethyl acetate and organic acids in acid rice soup(rice-acid soup)inoculated with Kluyveromyces marxianus L1-1 through the complementary analysis of transcriptome and proteome.The quantity of K.marxianus L1-1 varied significantly in the fermentation process of rice-acid soup and the first and third days were the two key turning points in the growth phase of K.marxianus L1-1.Importantly,the concentrations of ethyl acetate,ethanol,acetic acid,and L-lactic acid increased from day 1 to day 3.At least 4231 genes and 2937 proteins were identified and 610 differentially expressed proteins were annotated to 30 Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways based on the analysis results of transcriptome and proteome.The key genes and proteins including up-regulated alcohol dehydrogenase family,alcohol O-acetyltransferase,acetyl-CoA C-acetyltransferase,acyl-coenzyme A thioester hydrolase,and down-regulated aldehyde dehydrogenase family were involved in glycolysis/gluconeogenesis pathways,starch and sucrose metabolism pathways,amino sugar and nucleotide sugar metabolism pathways,tricarboxylic acid(TCA)cycle,and pyruvate metabolism pathways,thus promoting the formation of ethyl acetate,organic acids,alcohols,and other esters.Our results revealed the formation mechanisms of ethyl acetate and organic acids in rice-acid soup inoculated with K.marxianus L1-1.
基金funded by National Natural Science Foundation of China(32060530)Guizhou University,Gui Da Te Gang He Zi(2022)39,Science and Technology Project of Guizhou Province,Qian Ke He Zhicheng[2022]Zhongdian 001-2,Qian Ke He Zhicheng[2022]Zhongdian 003-3+1 种基金Industry-University-Research Cooperation Project of Guizhou University(701/700465172217)China Scholarship Council(201906670006).
文摘Compared with the rice-acid soup inoculated with single starter,the synergistically intensifi ed rice-acid soup inoculated with Lactobacillus paracasei H4-11(L.paracasei H4-11)and Kluyveromyces marxianus L1-1(K.marxianus L1-1)contained more fl avor compounds.Organic acids mainly included L-lactic acid and the main volatile fl avor component was ethyl acetate.Moreover,the signal intensity of astringency and bitterness and the total concentration of volatile sulfur compounds were reduced.The combined analysis results of RNA sequencing(RNA-seq)technology and 4D label-free quantitative(4D LFQ)proteomics explained the fl avor formation pathways in rice-acid soup inoculated with L.paracasei H4-11 and K.marxianus L1-1.In L.paracasei H4-11,L-lactate dehydrogenase,phosphoglucomutase,acetate kinase,alcohol dehydrogenase and acetyl-CoA were up-regulated and D-lactate dehydrogenase and N-Acetyltransferase were down-regulated.In K.marxianus L1-1,Acetyl-CoA,acetaldehyde dehydrogenase,acyl-coenzyme A,N-acetyltransferase,and L-lactate dehydrogenase were up-regulated and hexokinase,alcohol dehydrogenase,and alcohol O-acetyltransferase were down-regulated.The above up-regulation and down-regulation synergistically promoted the formation of characteristic fl avor compounds(mainly L-lactic acid and ethyl acetate).Enzyme-linked immunoassay(ELISA)and parallel reaction monitoring(PRM)quantitative analysis respectively verifi ed that 5 key metabolic enzymes and 27 proteins in L.paracasei H4-11 and K.marxianus L1-1 were associated with the characteristic fl avor of rice-acid soup,as confi rmed by the quantitative results of 4D LFQ.
文摘脆壁克鲁维酵母(Kluyveromycesfragilis)LFS 8611合成的β D 半乳糖苷酶具有较高的催化半乳糖基转移反应活力.脆壁克鲁维酵母(K.fragilis)LFS 8611细胞生长和β D 半乳糖苷酶的合成同步.该菌株生长和产酶的最适碳源为半乳糖,乳糖次之;最适氮源为蛋白胨F403;最适培养条件为:发酵培养基的初始pH值为7.0,摇床的转速为200r/min.培养基中碳源和氮源质量浓度对菌体生物量和β D 半乳糖苷酶活力有重要影响,以12mg/mL乳糖为碳源,16mg/mL蛋白胨(F403)为氮源,在最适培养条件下培养32h后,菌体生物量和β D 半乳糖苷酶活力分别为7.56g/L和18.83U/mL.
基金Supported by Science and Technology Fund of Heilongjiang Province Education Department (11541018)
文摘Response surface methodology was applied to optimize medium components for production of recombinant calf chymosin by Kluyveromyces lactis GG799.The previous data indicated that the most suitable carbon source,nitrogen source,salt and vitamin were glucose,yeast extract,KH2PO4 and Ca D-Pantothenate,respectively.The concentration of four media components were optimized by using central composite design of response surface methodology.The optimum medium composition for recombinant calf chymosin production was found to contain glucose 29.84 g· L-1,yeast extract 19.85 g·L-1,KH2PO4 0.1 g·L-1 and Ca D-Pantothenate 4.49 mg·L-1.The enzyme activity of recombinant calf chymosin was 722 U· mL-1,which was in an excellent agreement with the predicted value(723 U·mL-1).The production of recombinant calf chymosin from Kluyveromyces lactis GG799 was effectively increased by response surface methodology.