Currently, knowledge-based sharing and service system has been a hot issue and knowledge fusion, especially for implicit knowledge discovery, becomes the core of knowledge processing and optimization in the system. In...Currently, knowledge-based sharing and service system has been a hot issue and knowledge fusion, especially for implicit knowledge discovery, becomes the core of knowledge processing and optimization in the system. In the research, a knowledge fusion framework based on agricultural ontology and fusion rules was pro- posed, including knowledge extraction, clearing and annotation modules based on a- gricultural ontology, fusion rule construction, choosing and evaluation modules based on agricultural ontology and knowledge fusion module for users' demands. Finally, the significance of the framework to system of agricultural knowledge services was proved with the help of a case.展开更多
Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power system...Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power systems have explored KGs to develop intelligent dispatching systems for increasingly large power grids.With multiple power grid dispatching knowledge graphs(PDKGs)constructed by different agencies,the knowledge fusion of different PDKGs is useful for providing more accurate decision supports.To achieve this,entity alignment that aims at connecting different KGs by identifying equivalent entities is a critical step.Existing entity alignment methods cannot integrate useful structural,attribute,and relational information while calculating entities’similarities and are prone to making many-to-one alignments,thus can hardly achieve the best performance.To address these issues,this paper proposes a collective entity alignment model that integrates three kinds of available information and makes collective counterpart assignments.This model proposes a novel knowledge graph attention network(KGAT)to learn the embeddings of entities and relations explicitly and calculates entities’similarities by adaptively incorporating the structural,attribute,and relational similarities.Then,we formulate the counterpart assignment task as an integer programming(IP)problem to obtain one-to-one alignments.We not only conduct experiments on a pair of PDKGs but also evaluate o ur model on three commonly used cross-lingual KGs.Experimental comparisons indicate that our model outperforms other methods and provides an effective tool for the knowledge fusion of PDKGs.展开更多
Event extraction stands as a significant endeavor within the realm of information extraction,aspiring to automatically extract structured event information from vast volumes of unstructured text.Extracting event eleme...Event extraction stands as a significant endeavor within the realm of information extraction,aspiring to automatically extract structured event information from vast volumes of unstructured text.Extracting event elements from multi-modal data remains a challenging task due to the presence of a large number of images and overlapping event elements in the data.Although researchers have proposed various methods to accomplish this task,most existing event extraction models cannot address these challenges because they are only applicable to text scenarios.To solve the above issues,this paper proposes a multi-modal event extraction method based on knowledge fusion.Specifically,for event-type recognition,we use a meticulous pipeline approach that integrates multiple pre-trained models.This approach enables a more comprehensive capture of the multidimensional event semantic features present in military texts,thereby enhancing the interconnectedness of information between trigger words and events.For event element extraction,we propose a method for constructing a priori templates that combine event types with corresponding trigger words.This approach facilitates the acquisition of fine-grained input samples containing event trigger words,thus enabling the model to understand the semantic relationships between elements in greater depth.Furthermore,a fusion method for spatial mapping of textual event elements and image elements is proposed to reduce the category number overload and effectively achieve multi-modal knowledge fusion.The experimental results based on the CCKS 2022 dataset show that our method has achieved competitive results,with a comprehensive evaluation value F1-score of 53.4%for the model.These results validate the effectiveness of our method in extracting event elements from multi-modal data.展开更多
As a complex engineering problem,the satellite module layout design (SMLD) is difficult to resolve by using conventional computation-based approaches. The challenges stem from three aspects:computational complexity,en...As a complex engineering problem,the satellite module layout design (SMLD) is difficult to resolve by using conventional computation-based approaches. The challenges stem from three aspects:computational complexity,engineering complexity,and engineering practicability. Engineers often finish successful satellite designs by way of their plenty of experience and wisdom,lessons learnt from the past practices,as well as the assistance of the advanced computational techniques. Enlightened by the ripe patterns,th...展开更多
Cooperative planning is one of the critical problems in the field of multi-agent system gaming.This work focuses on cooperative planning when each agent has only a local observation range and local communication.We pr...Cooperative planning is one of the critical problems in the field of multi-agent system gaming.This work focuses on cooperative planning when each agent has only a local observation range and local communication.We propose a novel cooperative planning architecture that combines a graph neural network with a task-oriented knowledge fusion sampling method.Two main contributions of this paper are based on the comparisons with previous work:(1)we realize feasible and dynamic adjacent information fusion using GraphSAGE(i.e.,Graph SAmple and aggreGatE),which is the first time this method has been used to deal with the cooperative planning problem,and(2)a task-oriented sampling method is proposed to aggregate the available knowledge from a particular orientation,to obtain an effective and stable training process in our model.Experimental results demonstrate the good performance of our proposed method.展开更多
Objective To establish the knowledge graph of“disease-syndrome-symptom-method-formula”in Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)for reducing the fuzziness and uncertainty of data,and for laying a foun...Objective To establish the knowledge graph of“disease-syndrome-symptom-method-formula”in Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)for reducing the fuzziness and uncertainty of data,and for laying a foundation for later knowledge reasoning and its application.Methods Under the guidance of experts in the classical formula of traditional Chinese medicine(TCM),the method of“top-down as the main,bottom-up as the auxiliary”was adopted to carry out knowledge extraction,knowledge fusion,and knowledge storage from the five aspects of the disease,syndrome,symptom,method,and formula for the original text of Treatise on Febrile Diseases,and so the knowledge graph of Treatise on Febrile Diseases was constructed.On this basis,the knowledge structure query and the knowledge relevance query were realized in a visual manner.Results The knowledge graph of“disease-syndrome-symptom-method-formula”in the Treatise on Febrile Diseases was constructed,containing 6469 entities and 10911 relational triples,on which the query of entities and their relationships can be carried out and the query result can be visualized.Conclusion The knowledge graph of Treatise on Febrile Diseases systematically realizes its digitization of the knowledge system,and improves the completeness and accuracy of the knowledge representation,and the connection between“disease-syndrome-symptom-treatment-formula”,which is conducive to the sharing and reuse of knowledge can be obtained in a clear and efficient way.展开更多
Emotion cause extraction(ECE)task that aims at extracting potential trigger events of certain emotions has attracted extensive attention recently.However,current work neglects the implicit emotion expressed without an...Emotion cause extraction(ECE)task that aims at extracting potential trigger events of certain emotions has attracted extensive attention recently.However,current work neglects the implicit emotion expressed without any explicit emotional keywords,which appears more frequently in application scenarios.The lack of explicit emotion information makes it extremely hard to extract emotion causes only with the local context.Moreover,an entire event is usually across multiple clauses,while existing work merely extracts cause events at clause level and cannot effectively capture complete cause event information.To address these issues,the events are first redefined at the tuple level and a span-based tuple-level algorithm is proposed to extract events from different clauses.Based on it,a corpus for implicit emotion cause extraction that tries to extract causes of implicit emotions is constructed.The authors propose a knowledge-enriched jointlearning model of implicit emotion recognition and implicit emotion cause extraction tasks(KJ-IECE),which leverages commonsense knowledge from ConceptNet and NRC_VAD to better capture connections between emotion and corresponding cause events.Experiments on both implicit and explicit emotion cause extraction datasets demonstrate the effectiveness of the proposed model.展开更多
Generally,knowledge extraction technology is used to obtain nodes and relationships of unstructured data and structured data,and then the data fuse with the original knowledge graph to achieve the extension of the kno...Generally,knowledge extraction technology is used to obtain nodes and relationships of unstructured data and structured data,and then the data fuse with the original knowledge graph to achieve the extension of the knowledge graph.Because the concepts and knowledge structures expressed on the Internet have problems of multi-source heterogeneity and low accuracy,it is usually difficult to achieve a good effect simply by using knowledge extraction technology.Considering that domain knowledge is highly dependent on the relevant expert knowledge,the method of this paper try to expand the domain knowledge through the crowdsourcing method.The method split the domain knowledge system into subgraph of knowledge according to corresponding concept,form subtasks with moderate granularity,and use the crowdsourcing technology for the acquisition and integration of knowledge subgraph to improve the knowledge system.展开更多
The projectile penetration process into concrete target is a nonlinear complex problem.With the increase ofexperiment data,the data-driven paradigm has exhibited a new feasible method to solve such complex prob-lem.Ho...The projectile penetration process into concrete target is a nonlinear complex problem.With the increase ofexperiment data,the data-driven paradigm has exhibited a new feasible method to solve such complex prob-lem.However,due to poor quality of experimental data,the traditional machine learning(ML)methods,whichare driven only by experimental data,have poor generalization capabilities and limited prediction accuracy.Therefore,this study intends to exhibit a ML method fusing the prior knowledge with experiment data.The newML method can constrain the fitting to experimental data,improve the generalization ability and the predic-tion accuracy.Experimental results show that integrating domain prior knowledge can effectively improve theperformance of the prediction model for penetration depth into concrete targets.展开更多
Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the au...Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the automatic modeling of wind turbine blade,the program can read in the airfoil data files automatically and the impeller model entity can be generated automatically.In order to modify the model,the aerodynamic characteristics of the impeller were analyzed for getting aerodynamic parameters by Fluent.The maximum force torch and best parameters of impeller were calculated.A physical prototype impeller was manufactured and the correctness of the design was verified,and the error of force torch between simulation and experimental results is about 10%.Parameterization design of the impeller model greatly improves the efficiency of modeling and flexibility of the CAD system.展开更多
A key aspect of Knowledge fusion is Entity Matching.The objective of this study was to investigate how to identify heterogeneous expressions of the same real-world entity.In recent years,some representative works have...A key aspect of Knowledge fusion is Entity Matching.The objective of this study was to investigate how to identify heterogeneous expressions of the same real-world entity.In recent years,some representative works have used deep learning methods for entity matching,and these methods have achieved good results.However,the common limitation of these methods is that they assume that different attribute columns of the same entity are independent,and inputting the model in the form of paired entity records will cause repeated calculations.In fact,there are often potential relations between different attribute columns of different entities.These relations can help us improve the effect of entity matching,and can perform feature extraction on a single entity record to avoid repeated calculations.To use attribute relations to assist entity matching,this paper proposes the Relation-aware Entity Matching method,which embeds attribute relations into the original entity description to form sentences,so that entity matching is transformed into a sentence-level similarity determination task,based on Sentence-BERT completes sentence similarity calculation.We have conducted experiments on structured,dirty,and textual data,and compared them with baselines in recent years.Experimental results show that the use of relational embedding is helpful for entity matching on structured and dirty data.Our method has good results on most data sets for entity matching and reduces repeated calculations.展开更多
Modem product development becomes increasingly collaborative and integrated, which raises the need for effectively and efficiently sharing and re-using design knowledge in a distributed and collaborative environment. ...Modem product development becomes increasingly collaborative and integrated, which raises the need for effectively and efficiently sharing and re-using design knowledge in a distributed and collaborative environment. To address this need, a framework is developed in this research to support design knowledge representation, retrieval, reasoning and fusion, which takes account of structural, functional and behavioral data, various design attributes and knowledge reasoning cases. Specifically, a multi-level knowledge representation based on the Base Object Model (BOM) is proposed to enable knowledge sharing using Web services technologies. On this basis, a multi-level knowledge reuse method is developed to support the retrieval, matching and assembly of knowledge records. Due to the tree structure of BOM, both depth-first and breadth-first searching strategies are employed in the retrieval algorithm while a novel measure is proposed to evaluate similarity. Moreover, a method based on the D-S evidence theory is developed to enable knowledge fusion and thus support effective decision-making. The framework has been implemented and integrated into an HLA-based simulation platform on which the development of a missile simulation example is conducted. It is demonstrated in the case study that the proposed framework and methods are useful and effective for design knowledge representation and reuse.展开更多
Competitive intelligence(CI)is a key factor in helping business leaders gain and maintain competitive advantages.The emergence of big data and Web 2.0 has created new opportunities and more challenges for enterprises ...Competitive intelligence(CI)is a key factor in helping business leaders gain and maintain competitive advantages.The emergence of big data and Web 2.0 has created new opportunities and more challenges for enterprises to effectively obtain CI.This paper attempts to explore a CI identification method based on strategic factors(SF).By filtering process before CI collection,the core CI,closely related to critical success factors and crisis inducement factors,are identified reliably and efficiently.Based on knowledge element model and multiattribute fusion method,emphasis is placed on the construction of a criterion function by which the SF thesaurus in achieving CI objectives is established.The advantages of this method lie not only in the capability of mining the core CI from massive data,but also in the foundation of efficient CI storage and analysis.This paper is of significance to make a thorough inquiry on CI obtaining and fusing methods of CI system in era of big data.Experiment results verified the feasibility and validity of this study.展开更多
基金Supported by Specialized Funds of CASIndividual Service System of Agricultural Information in Tibet(2012-J-08)+1 种基金Science and Technology Funds of CASMultimedia Information Service in Rural Area based on 3G Information Terminal(201219)~~
文摘Currently, knowledge-based sharing and service system has been a hot issue and knowledge fusion, especially for implicit knowledge discovery, becomes the core of knowledge processing and optimization in the system. In the research, a knowledge fusion framework based on agricultural ontology and fusion rules was pro- posed, including knowledge extraction, clearing and annotation modules based on a- gricultural ontology, fusion rule construction, choosing and evaluation modules based on agricultural ontology and knowledge fusion module for users' demands. Finally, the significance of the framework to system of agricultural knowledge services was proved with the help of a case.
基金supported by the National Key R&D Program of China(2018AAA0101502)the Science and Technology Project of SGCC(State Grid Corporation of China):Fundamental Theory of Human-in-the-Loop Hybrid-Augmented Intelligence for Power Grid Dispatch and Control。
文摘Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power systems have explored KGs to develop intelligent dispatching systems for increasingly large power grids.With multiple power grid dispatching knowledge graphs(PDKGs)constructed by different agencies,the knowledge fusion of different PDKGs is useful for providing more accurate decision supports.To achieve this,entity alignment that aims at connecting different KGs by identifying equivalent entities is a critical step.Existing entity alignment methods cannot integrate useful structural,attribute,and relational information while calculating entities’similarities and are prone to making many-to-one alignments,thus can hardly achieve the best performance.To address these issues,this paper proposes a collective entity alignment model that integrates three kinds of available information and makes collective counterpart assignments.This model proposes a novel knowledge graph attention network(KGAT)to learn the embeddings of entities and relations explicitly and calculates entities’similarities by adaptively incorporating the structural,attribute,and relational similarities.Then,we formulate the counterpart assignment task as an integer programming(IP)problem to obtain one-to-one alignments.We not only conduct experiments on a pair of PDKGs but also evaluate o ur model on three commonly used cross-lingual KGs.Experimental comparisons indicate that our model outperforms other methods and provides an effective tool for the knowledge fusion of PDKGs.
基金supported by the National Natural Science Foundation of China(Grant No.81973695)Discipline with Strong Characteristics of Liaocheng University-Intelligent Science and Technology(Grant No.319462208).
文摘Event extraction stands as a significant endeavor within the realm of information extraction,aspiring to automatically extract structured event information from vast volumes of unstructured text.Extracting event elements from multi-modal data remains a challenging task due to the presence of a large number of images and overlapping event elements in the data.Although researchers have proposed various methods to accomplish this task,most existing event extraction models cannot address these challenges because they are only applicable to text scenarios.To solve the above issues,this paper proposes a multi-modal event extraction method based on knowledge fusion.Specifically,for event-type recognition,we use a meticulous pipeline approach that integrates multiple pre-trained models.This approach enables a more comprehensive capture of the multidimensional event semantic features present in military texts,thereby enhancing the interconnectedness of information between trigger words and events.For event element extraction,we propose a method for constructing a priori templates that combine event types with corresponding trigger words.This approach facilitates the acquisition of fine-grained input samples containing event trigger words,thus enabling the model to understand the semantic relationships between elements in greater depth.Furthermore,a fusion method for spatial mapping of textual event elements and image elements is proposed to reduce the category number overload and effectively achieve multi-modal knowledge fusion.The experimental results based on the CCKS 2022 dataset show that our method has achieved competitive results,with a comprehensive evaluation value F1-score of 53.4%for the model.These results validate the effectiveness of our method in extracting event elements from multi-modal data.
基金National Natural Science Foundation of China (50575031, 50275019)National High-tech Research and Development Program (2006AA04Z109)
文摘As a complex engineering problem,the satellite module layout design (SMLD) is difficult to resolve by using conventional computation-based approaches. The challenges stem from three aspects:computational complexity,engineering complexity,and engineering practicability. Engineers often finish successful satellite designs by way of their plenty of experience and wisdom,lessons learnt from the past practices,as well as the assistance of the advanced computational techniques. Enlightened by the ripe patterns,th...
基金Project supported by the National Natural Science Foundation。
文摘Cooperative planning is one of the critical problems in the field of multi-agent system gaming.This work focuses on cooperative planning when each agent has only a local observation range and local communication.We propose a novel cooperative planning architecture that combines a graph neural network with a task-oriented knowledge fusion sampling method.Two main contributions of this paper are based on the comparisons with previous work:(1)we realize feasible and dynamic adjacent information fusion using GraphSAGE(i.e.,Graph SAmple and aggreGatE),which is the first time this method has been used to deal with the cooperative planning problem,and(2)a task-oriented sampling method is proposed to aggregate the available knowledge from a particular orientation,to obtain an effective and stable training process in our model.Experimental results demonstrate the good performance of our proposed method.
基金The Open Fund of Hunan University of Traditional Chinese Medicine for the First-Class Discipline of Traditional Chinese Medicine(2018ZYX66)the Science Research Project of Hunan Provincial Department of Education(20C1391)the Natural Science Foundation of Hunan Province(2020JJ4461)。
文摘Objective To establish the knowledge graph of“disease-syndrome-symptom-method-formula”in Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)for reducing the fuzziness and uncertainty of data,and for laying a foundation for later knowledge reasoning and its application.Methods Under the guidance of experts in the classical formula of traditional Chinese medicine(TCM),the method of“top-down as the main,bottom-up as the auxiliary”was adopted to carry out knowledge extraction,knowledge fusion,and knowledge storage from the five aspects of the disease,syndrome,symptom,method,and formula for the original text of Treatise on Febrile Diseases,and so the knowledge graph of Treatise on Febrile Diseases was constructed.On this basis,the knowledge structure query and the knowledge relevance query were realized in a visual manner.Results The knowledge graph of“disease-syndrome-symptom-method-formula”in the Treatise on Febrile Diseases was constructed,containing 6469 entities and 10911 relational triples,on which the query of entities and their relationships can be carried out and the query result can be visualized.Conclusion The knowledge graph of Treatise on Febrile Diseases systematically realizes its digitization of the knowledge system,and improves the completeness and accuracy of the knowledge representation,and the connection between“disease-syndrome-symptom-treatment-formula”,which is conducive to the sharing and reuse of knowledge can be obtained in a clear and efficient way.
基金National Natural Science Foundation of China,Grant/Award Numbers:61671064,61732005National Key Research&Development Program,Grant/Award Number:2018YFC0831700。
文摘Emotion cause extraction(ECE)task that aims at extracting potential trigger events of certain emotions has attracted extensive attention recently.However,current work neglects the implicit emotion expressed without any explicit emotional keywords,which appears more frequently in application scenarios.The lack of explicit emotion information makes it extremely hard to extract emotion causes only with the local context.Moreover,an entire event is usually across multiple clauses,while existing work merely extracts cause events at clause level and cannot effectively capture complete cause event information.To address these issues,the events are first redefined at the tuple level and a span-based tuple-level algorithm is proposed to extract events from different clauses.Based on it,a corpus for implicit emotion cause extraction that tries to extract causes of implicit emotions is constructed.The authors propose a knowledge-enriched jointlearning model of implicit emotion recognition and implicit emotion cause extraction tasks(KJ-IECE),which leverages commonsense knowledge from ConceptNet and NRC_VAD to better capture connections between emotion and corresponding cause events.Experiments on both implicit and explicit emotion cause extraction datasets demonstrate the effectiveness of the proposed model.
文摘Generally,knowledge extraction technology is used to obtain nodes and relationships of unstructured data and structured data,and then the data fuse with the original knowledge graph to achieve the extension of the knowledge graph.Because the concepts and knowledge structures expressed on the Internet have problems of multi-source heterogeneity and low accuracy,it is usually difficult to achieve a good effect simply by using knowledge extraction technology.Considering that domain knowledge is highly dependent on the relevant expert knowledge,the method of this paper try to expand the domain knowledge through the crowdsourcing method.The method split the domain knowledge system into subgraph of knowledge according to corresponding concept,form subtasks with moderate granularity,and use the crowdsourcing technology for the acquisition and integration of knowledge subgraph to improve the knowledge system.
基金supported by the National Natural Science Founda-tion of China(Grant No.12172381)Leading Talents of Science and Technology in the Central Plain of China(Grant No.234200510016).
文摘The projectile penetration process into concrete target is a nonlinear complex problem.With the increase ofexperiment data,the data-driven paradigm has exhibited a new feasible method to solve such complex prob-lem.However,due to poor quality of experimental data,the traditional machine learning(ML)methods,whichare driven only by experimental data,have poor generalization capabilities and limited prediction accuracy.Therefore,this study intends to exhibit a ML method fusing the prior knowledge with experiment data.The newML method can constrain the fitting to experimental data,improve the generalization ability and the predic-tion accuracy.Experimental results show that integrating domain prior knowledge can effectively improve theperformance of the prediction model for penetration depth into concrete targets.
基金Project(gjd-09041)supported by the Natural Science Foundation of Shanghai Municipal Education Commission,China
文摘Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the automatic modeling of wind turbine blade,the program can read in the airfoil data files automatically and the impeller model entity can be generated automatically.In order to modify the model,the aerodynamic characteristics of the impeller were analyzed for getting aerodynamic parameters by Fluent.The maximum force torch and best parameters of impeller were calculated.A physical prototype impeller was manufactured and the correctness of the design was verified,and the error of force torch between simulation and experimental results is about 10%.Parameterization design of the impeller model greatly improves the efficiency of modeling and flexibility of the CAD system.
基金This work is funded by Guangdong Basic and Applied Basic Research Foundation(No.2021A1515012307,2020A1515010450)Guangzhou Basic and Applied Basic Research Foundation(No.202102021207,202102020867)+4 种基金the National Natural Science Foundation of China(No.62072130,61702220,61702223)Guangdong Province Key Area R&D Program of China(No.2019B010136003,2019B010137004)Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2019)Guangdong Higher Education Innovation Group(No.2020KCXTD007)Guangzhou Higher Education Innovation Group(No.202032854)。
文摘A key aspect of Knowledge fusion is Entity Matching.The objective of this study was to investigate how to identify heterogeneous expressions of the same real-world entity.In recent years,some representative works have used deep learning methods for entity matching,and these methods have achieved good results.However,the common limitation of these methods is that they assume that different attribute columns of the same entity are independent,and inputting the model in the form of paired entity records will cause repeated calculations.In fact,there are often potential relations between different attribute columns of different entities.These relations can help us improve the effect of entity matching,and can perform feature extraction on a single entity record to avoid repeated calculations.To use attribute relations to assist entity matching,this paper proposes the Relation-aware Entity Matching method,which embeds attribute relations into the original entity description to form sentences,so that entity matching is transformed into a sentence-level similarity determination task,based on Sentence-BERT completes sentence similarity calculation.We have conducted experiments on structured,dirty,and textual data,and compared them with baselines in recent years.Experimental results show that the use of relational embedding is helpful for entity matching on structured and dirty data.Our method has good results on most data sets for entity matching and reduces repeated calculations.
基金This research is supported by the National Natural Science Foundation of China (Grant No.61374163), the National Key Technology R&D Program (Grant No. 2012BAF15G00), the National High Technology Research and Development Program (863 Program) of China (Grant No.2013AA041302). Acknowledgments This research is supported by the National Natural Science Foundation of China (Grant No.61374163 ) , the National Key Technology R&D Program (Grant No. 2012BAF 15G00), the National High Technology Research and Development Program (863 Program) of China (Grant No.2013AA041302). The original version of this paper was presented at the 18th 1EEE CSCWD Conference held in Taiwan, China in May 2014.
文摘Modem product development becomes increasingly collaborative and integrated, which raises the need for effectively and efficiently sharing and re-using design knowledge in a distributed and collaborative environment. To address this need, a framework is developed in this research to support design knowledge representation, retrieval, reasoning and fusion, which takes account of structural, functional and behavioral data, various design attributes and knowledge reasoning cases. Specifically, a multi-level knowledge representation based on the Base Object Model (BOM) is proposed to enable knowledge sharing using Web services technologies. On this basis, a multi-level knowledge reuse method is developed to support the retrieval, matching and assembly of knowledge records. Due to the tree structure of BOM, both depth-first and breadth-first searching strategies are employed in the retrieval algorithm while a novel measure is proposed to evaluate similarity. Moreover, a method based on the D-S evidence theory is developed to enable knowledge fusion and thus support effective decision-making. The framework has been implemented and integrated into an HLA-based simulation platform on which the development of a missile simulation example is conducted. It is demonstrated in the case study that the proposed framework and methods are useful and effective for design knowledge representation and reuse.
基金the National Natural Science Foundation of China(No.91024029)the Social Science Youth Fund of Liaoning Province of China(No.L13CTQ013)
文摘Competitive intelligence(CI)is a key factor in helping business leaders gain and maintain competitive advantages.The emergence of big data and Web 2.0 has created new opportunities and more challenges for enterprises to effectively obtain CI.This paper attempts to explore a CI identification method based on strategic factors(SF).By filtering process before CI collection,the core CI,closely related to critical success factors and crisis inducement factors,are identified reliably and efficiently.Based on knowledge element model and multiattribute fusion method,emphasis is placed on the construction of a criterion function by which the SF thesaurus in achieving CI objectives is established.The advantages of this method lie not only in the capability of mining the core CI from massive data,but also in the foundation of efficient CI storage and analysis.This paper is of significance to make a thorough inquiry on CI obtaining and fusing methods of CI system in era of big data.Experiment results verified the feasibility and validity of this study.