期刊文献+
共找到617,305篇文章
< 1 2 250 >
每页显示 20 50 100
A new evolutional model for institutional field knowledge flow network
1
作者 Jinzhong Guo Kai Wang +1 位作者 Xueqin Liao Xiaoling Liu 《Journal of Data and Information Science》 CSCD 2024年第1期101-123,共23页
Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose... Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose is to simulate the construction process of a knowledge flow network using knowledge organizations as units and to investigate its effectiveness in replicating institutional field knowledge flow networks.Design/Methodology/Approach:The IKM model enhances the preferential attachment and growth observed in scale-free BA networks,while incorporating three adjustment parameters to simulate the selection of connection targets and the types of nodes involved in the network evolution process Using the PageRank algorithm to calculate the significance of nodes within the knowledge flow network.To compare its performance,the BA and DMS models are also employed for simulating the network.Pearson coefficient analysis is conducted on the simulated networks generated by the IKM,BA and DMS models,as well as on the actual network.Findings:The research findings demonstrate that the IKM model outperforms the BA and DMS models in replicating the institutional field knowledge flow network.It provides comprehensive insights into the evolution mechanism of knowledge flow networks in the scientific research realm.The model also exhibits potential applicability to other knowledge networks that involve knowledge organizations as node units.Research Limitations:This study has some limitations.Firstly,it primarily focuses on the evolution of knowledge flow networks within the field of physics,neglecting other fields.Additionally,the analysis is based on a specific set of data,which may limit the generalizability of the findings.Future research could address these limitations by exploring knowledge flow networks in diverse fields and utilizing broader datasets.Practical Implications:The proposed IKM model offers practical implications for the construction and analysis of knowledge flow networks within institutions.It provides a valuable tool for understanding and managing knowledge exchange between knowledge organizations.The model can aid in optimizing knowledge flow and enhancing collaboration within organizations.Originality/value:This research highlights the significance of meso-level studies in understanding knowledge organization and its impact on knowledge flow networks.The IKM model demonstrates its effectiveness in replicating institutional field knowledge flow networks and offers practical implications for knowledge management in institutions.Moreover,the model has the potential to be applied to other knowledge networks,which are formed by knowledge organizations as node units. 展开更多
关键词 knowledge flow networks Evolutionary mechanism BA model knowledge units
下载PDF
GATiT:An Intelligent Diagnosis Model Based on Graph Attention Network Incorporating Text Representation in Knowledge Reasoning
2
作者 Yu Song Pengcheng Wu +2 位作者 Dongming Dai Mingyu Gui Kunli Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4767-4790,共24页
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me... The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods. 展开更多
关键词 Intelligent diagnosis knowledge graph graph attention network knowledge reasoning
下载PDF
RepDNet:A re-parameterization despeckling network for autonomous underwater side-scan sonar imaging with prior-knowledge customized convolution
3
作者 Zhuoyi Li Zhisen Wang +2 位作者 Deshan Chen Tsz Leung Yip Angelo P.Teixeira 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期259-274,共16页
Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging alo... Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging along a predetermined trajectory.However,SSS images often suffer from speckle noise caused by mutual interference between echoes,and limited AUV computational resources further hinder noise suppression.Existing approaches for SSS image processing and speckle noise reduction rely heavily on complex network structures and fail to combine the benefits of deep learning and domain knowledge.To address the problem,Rep DNet,a novel and effective despeckling convolutional neural network is proposed.Rep DNet introduces two re-parameterized blocks:the Pixel Smoothing Block(PSB)and Edge Enhancement Block(EEB),preserving edge information while attenuating speckle noise.During training,PSB and EEB manifest as double-layered multi-branch structures,integrating first-order and secondorder derivatives and smoothing functions.During inference,the branches are re-parameterized into a 3×3 convolution,enabling efficient inference without sacrificing accuracy.Rep DNet comprises three computational operations:3×3 convolution,element-wise summation and Rectified Linear Unit activation.Evaluations on benchmark datasets,a real SSS dataset and Data collected at Lake Mulan aestablish Rep DNet as a well-balanced network,meeting the AUV computational constraints in terms of performance and latency. 展开更多
关键词 Side-scan sonar Sonar image despeckling Domain knowledge RE-PARAMETERIZATION
下载PDF
Hyperbolic hierarchical graph attention network for knowledge graph completion
4
作者 XU Hao CHEN Shudong +3 位作者 QI Donglin TONG Da YU Yong CHEN Shuai 《High Technology Letters》 EI CAS 2024年第3期271-279,共9页
Utilizing graph neural networks for knowledge embedding to accomplish the task of knowledge graph completion(KGC)has become an important research area in knowledge graph completion.However,the number of nodes in the k... Utilizing graph neural networks for knowledge embedding to accomplish the task of knowledge graph completion(KGC)has become an important research area in knowledge graph completion.However,the number of nodes in the knowledge graph increases exponentially with the depth of the tree,whereas the distances of nodes in Euclidean space are second-order polynomial distances,whereby knowledge embedding using graph neural networks in Euclidean space will not represent the distances between nodes well.This paper introduces a novel approach called hyperbolic hierarchical graph attention network(H2GAT)to rectify this limitation.Firstly,the paper conducts knowledge representation in the hyperbolic space,effectively mitigating the issue of exponential growth of nodes with tree depth and consequent information loss.Secondly,it introduces a hierarchical graph atten-tion mechanism specifically designed for the hyperbolic space,allowing for enhanced capture of the network structure inherent in the knowledge graph.Finally,the efficacy of the proposed H2GAT model is evaluated on benchmark datasets,namely WN18RR and FB15K-237,thereby validating its effectiveness.The H2GAT model achieved 0.445,0.515,and 0.586 in the Hits@1,Hits@3 and Hits@10 metrics respectively on the WN18RR dataset and 0.243,0.367 and 0.518 on the FB15K-237 dataset.By incorporating hyperbolic space embedding and hierarchical graph attention,the H2GAT model successfully addresses the limitations of existing hyperbolic knowledge embedding models,exhibiting its competence in knowledge graph completion tasks. 展开更多
关键词 hyperbolic space link prediction knowledge graph embedding knowledge graph completion(KGC)
下载PDF
Identification of partial differential equations from noisy data with integrated knowledge discovery and embedding using evolutionary neural networks
5
作者 Hanyu Zhou Haochen Li Yaomin Zhao 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期90-97,共8页
Identification of underlying partial differential equations(PDEs)for complex systems remains a formidable challenge.In the present study,a robust PDE identification method is proposed,demonstrating the ability to extr... Identification of underlying partial differential equations(PDEs)for complex systems remains a formidable challenge.In the present study,a robust PDE identification method is proposed,demonstrating the ability to extract accurate governing equations under noisy conditions without prior knowledge.Specifically,the proposed method combines gene expression programming,one type of evolutionary algorithm capable of generating unseen terms based solely on basic operators and functional terms,with symbolic regression neural networks.These networks are designed to represent explicit functional expressions and optimize them with data gradients.In particular,the specifically designed neural networks can be easily transformed to physical constraints for the training data,embedding the discovered PDEs to further optimize the metadata used for iterative PDE identification.The proposed method has been tested in four canonical PDE cases,validating its effectiveness without preliminary information and confirming its suitability for practical applications across various noise levels. 展开更多
关键词 PDE discovery Gene Expression Programming Deep Learning knowledge embedding
下载PDF
Application of sparse S transform network with knowledge distillation in seismic attenuation delineation
6
作者 Nai-Hao Liu Yu-Xin Zhang +3 位作者 Yang Yang Rong-Chang Liu Jing-Huai Gao Nan Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2345-2355,共11页
Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficul... Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficulty in selecting parameters,and the low computational efficiency.Inspired by deep learning,we suggest a deep learning-based workflow for seismic time-frequency analysis.The sparse S transform network(SSTNet)is first built to map the relationship between synthetic traces and sparse S transform spectra,which can be easily pre-trained by using synthetic traces and training labels.Next,we introduce knowledge distillation(KD)based transfer learning to re-train SSTNet by using a field data set without training labels,which is named the sparse S transform network with knowledge distillation(KD-SSTNet).In this way,we can effectively calculate the sparse time-frequency spectra of field data and avoid the use of field training labels.To test the availability of the suggested KD-SSTNet,we apply it to field data to estimate seismic attenuation for reservoir characterization and make detailed comparisons with the traditional time-frequency analysis methods. 展开更多
关键词 S transform Deep learning knowledge distillation Transfer learning Seismic attenuation delineation
下载PDF
A topic-controllable keywords-to-text generator with knowledge base network
7
作者 Li He Kaize Shi +2 位作者 Dingxian Wang Xianzhi Wang Guandong Xu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期585-594,共10页
With the introduction of more recent deep learning models such as encoder-decoder,text generation frameworks have gained a lot of popularity.In Natural Language Generation(NLG),controlling the information and style of... With the introduction of more recent deep learning models such as encoder-decoder,text generation frameworks have gained a lot of popularity.In Natural Language Generation(NLG),controlling the information and style of the output produced is a crucial and challenging task.The purpose of this paper is to develop informative and controllable text using social media language by incorporating topic knowledge into a keyword-to-text framework.A novel Topic-Controllable Key-to-Text(TC-K2T)generator that focuses on the issues of ignoring unordered keywords and utilising subject-controlled information from previous research is presented.TC-K2T is built on the framework of conditional language encoders.In order to guide the model to produce an informative and controllable language,the generator first inputs unordered keywords and uses subjects to simulate prior human knowledge.Using an additional probability term,the model in-creases the likelihood of topic words appearing in the generated text to bias the overall distribution.The proposed TC-K2T can produce more informative and controllable senescence,outperforming state-of-the-art models,according to empirical research on automatic evaluation metrics and human annotations. 展开更多
关键词 artificial intelligence techniques artificial neural networks deep learning
下载PDF
Application of virtual reality technology improves the functionality of brain networks in individuals experiencing pain
8
作者 Takahiko Nagamine 《World Journal of Clinical Cases》 SCIE 2025年第3期66-68,共3页
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u... Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field. 展开更多
关键词 Virtual reality PAIN ANXIETY Salience network Default mode network
下载PDF
Assessing healthcare workers’knowledge and confidence in the diagnosis,management and prevention of Monkeypox
9
作者 Epipode Ntawuyamara Thierry Ingabire +3 位作者 Innocent Yandemye Polycarpe Ndayikeza Bina Bhandari Yan-Hua Liang 《World Journal of Clinical Cases》 SCIE 2025年第1期38-47,共10页
BACKGROUND Monkeypox(Mpox),is a disease of global public health concern,as it does not affect only countries in western and central Africa.AIM To assess Burundi healthcare workers(HCWs)s’level of knowledge and confid... BACKGROUND Monkeypox(Mpox),is a disease of global public health concern,as it does not affect only countries in western and central Africa.AIM To assess Burundi healthcare workers(HCWs)s’level of knowledge and confidence in the diagnosis and management of Mpox.METHODS We conducted a cross-sectional study via an online survey designed mainly from the World Health Organization course distributed among Burundi HCWs from June-July 2023.The questionnaire comprises 8 socioprofessional-related questions,22 questions about Mpox disease knowledge,and 3 questions to assess confidence in Mpox diagnosis and management.The data were analyzed via SPSS software version 25.0.A P value<0.05 was considered to indicate statistical significance.RESULTS The study sample comprised 471 HCWs who were mainly medical doctors(63.9%)and nurses(30.1%).None of the 22 questions concerning Mpox knowledge had at least 50%correct responses.A very low number of HCWs(17.4%)knew that Mpox has a vaccine.The confidence level to diagnose(21.20%),treat(18.00%)or prevent(23.30%)Mpox was low among HCWs.The confidence level in the diagnosis of Mpox was associated with the HCWs’age(P value=0.009),sex(P value<0.001),work experience(P value=0.002),and residence(P value<0.001).The confidence level to treat Mpox was significantly associated with the HCWs’age(P value=0.050),sex(P value<0.001),education(P value=0.033)and occupation(P value=0.005).The confidence level to prevent Mpox was associated with the HCWs’education(P value<0.001),work experience(P value=0.002),residence(P value<0.001)and type of work institution(P value=0.003).CONCLUSION This study revealed that HCWs have the lowest level of knowledge regarding Mpox and a lack of confidence in the ability to diagnose,treat or prevent it.There is an urgent need to organize continuing medical education programs on Mpox epidemiology and preparedness for Burundi HCWs.We encourage future researchers to assess potential hesitancy toward Mpox vaccination and its associated factors. 展开更多
关键词 MONKEYPOX Public health emergency of international concern Healthcare workers EPIDEMIC PREPAREDNESS knowledge CONFIDENCE
下载PDF
Unlocking the future:Mitochondrial genes and neural networks in predicting ovarian cancer prognosis and immunotherapy response
10
作者 Zhi-Jian Tang Yuan-Ming Pan +2 位作者 Wei Li Rui-Qiong Ma Jian-Liu Wang 《World Journal of Clinical Oncology》 2025年第1期43-52,共10页
BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnose... BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies. 展开更多
关键词 Ovarian cancer MITOCHONDRIA PROGNOSIS IMMUNOTHERAPY Neural network
下载PDF
Resting-state brain network remodeling after different nerve reconstruction surgeries:a functional magnetic resonance imaging study in brachial plexus injury rats
11
作者 Yunting Xiang Xiangxin Xing +6 位作者 Xuyun Hua Yuwen Zhang Xin Xue Jiajia Wu Mouxiong Zheng He Wang Jianguang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1495-1504,共10页
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev... Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery. 展开更多
关键词 brain functional networks end-to-end nerve transfer end-to-side nerve transfer independent component analysis nerve repair peripheral plexus injury resting-state functional connectivity
下载PDF
Generation of scale-free knowledge network with local world mechanism
12
作者 单海燕 王文平 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期545-548,共4页
In order to simulate the real growing process, a new type of knowledge network growth mechanism based on local world connectivity is constructed. By the mean-field method, theoretical prediction of the degree distribu... In order to simulate the real growing process, a new type of knowledge network growth mechanism based on local world connectivity is constructed. By the mean-field method, theoretical prediction of the degree distribution of the knowledge network is given, which is verified by Matlab simulations. When the new added node's local world size is very small, the degree distribution of the knowledge network approximately has the property of scale-free. When the new added node's local world size is not very small, the degree distribution transforms from pure power-law to the power-law with an exponential tailing. And the scale-free index increases as the number of new added edges decreases and the tunable parameters increase. Finally, comparisons of some knowledge indices in knowledge networks generated by the local world mechanism and the global mechanism are given. In the long run, compared with the global mechanism, the local world mechanism leads the average knowledge levels to slower growth and brings homogenous phenomena. 展开更多
关键词 knowledge network network structure SCALE-FREE local world mechanism
下载PDF
Semantic web-based networked manufacturing knowledge retrieval system
13
作者 井浩 张璟 李军怀 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期333-337,共5页
To deal with a lack of semantic interoperability of traditional knowledge retrieval approaches, a semantic-based networked manufacturing (NM) knowledge retrieval architecture is proposed, which offers a series of to... To deal with a lack of semantic interoperability of traditional knowledge retrieval approaches, a semantic-based networked manufacturing (NM) knowledge retrieval architecture is proposed, which offers a series of tools for supporting the sharing of knowledge and promoting NM collaboration. A 5-tuple based semantic information retrieval model is proposed, which includes the interoperation on the semantic layer, and a test process is given for this model. The recall ratio and the precision ratio of manufacturing knowledge retrieval are proved to be greatly improved by evaluation. Thus, a practical and reliable approach based on the semantic web is provided for solving the correlated concrete problems in regional networked manufacturing. 展开更多
关键词 knowledge retrieval semantic web ONTOLOGY networked manufacturing
下载PDF
Structures of semantic networks: how do we learn semantic knowledge 被引量:5
14
作者 唐璐 张永光 付雪 《Journal of Southeast University(English Edition)》 EI CAS 2006年第3期413-417,共5页
Global semantic structures of two large semantic networks, HowNet and WordNet, are analyzed. It is found that they are both complex networks with features of small-world and scale-free, but with special properties. Ex... Global semantic structures of two large semantic networks, HowNet and WordNet, are analyzed. It is found that they are both complex networks with features of small-world and scale-free, but with special properties. Exponents of power law degree distribution of these two networks are between 1.0 and 2. 0, different from most scale-free networks which have exponents near 3.0. Coefficients of degree correlation are lower than 0, similar to biological networks. The BA (Barabasi-Albert) model and other similar models cannot explain their dynamics. Relations between clustering coefficient and node degree obey scaling law, which suggests that there exist self-similar hierarchical structures in networks. The results suggest that structures of semantic networks are influenced by the ways we learn semantic knowledge such as aggregation and metaphor. 展开更多
关键词 semantic networks complex networks SMALL-WORLD SCALE-FREE hierarchical organization
下载PDF
New Knowledge Network Evaluation Method for Design Rationale Management 被引量:3
15
作者 JING Shikai ZHAN Hongfei +3 位作者 LIU Jihong WANG Kuan JIANG Hao ZHOU Jingtao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期173-186,共14页
Current design rationale (DR) systems have not demonstrated the value of the approach in practice since little attention is put to the evaluation method of DR knowledge. To systematize knowledge management process f... Current design rationale (DR) systems have not demonstrated the value of the approach in practice since little attention is put to the evaluation method of DR knowledge. To systematize knowledge management process for future computer-aided DR applications, a prerequisite is to provide the measure for the DR knowledge. In this paper, a new knowledge network evaluation method for DR management is presented. The method characterizes the DR knowledge value from four perspectives, namely, the design rationale structure scale, association knowledge and reasoning ability, degree of design justification support and degree of knowledge representation conciseness. The DR knowledge comprehensive value is also measured by the proposed method. To validate the proposed method, different style of DR knowledge network and the performance of the proposed measure are discussed. The evaluation method has been applied in two realistic design cases and compared with the structural measures. The research proposes the DR knowledge evaluation method which can provide object metric and selection basis for the DR knowledge reuse during the product design process. In addition, the method is proved to be more effective guidance and support for the application and management of DR knowledge. 展开更多
关键词 design rationale knowledge reasoning justification support decision support knowledge network evaluation
下载PDF
Networked Knowledge and Complex Networks:An Engineering View 被引量:3
16
作者 Jinhu Lü Guanghui Wen +2 位作者 Ruqian Lu Yong Wang Songmao Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第8期1366-1383,共18页
Along with the development of information technologies such as mobile Internet,information acquisition technology,cloud computing and big data technology,the traditional knowledge engineering and knowledge-based softw... Along with the development of information technologies such as mobile Internet,information acquisition technology,cloud computing and big data technology,the traditional knowledge engineering and knowledge-based software engineering have undergone fundamental changes where the network plays an increasingly important role.Within this context,it is required to develop new methodologies as well as technical tools for network-based knowledge representation,knowledge services and knowledge engineering.Obviously,the term“network”has different meanings in different scenarios.Meanwhile,some breakthroughs in several bottleneck problems of complex networks promote the developments of the new methodologies and technical tools for network-based knowledge representation,knowledge services and knowledge engineering.This paper first reviews some recent advances on complex networks,and then,in conjunction with knowledge graph,proposes a framework of networked knowledge which models knowledge and its relationships with the perspective of complex networks.For the unique advantages of deep learning in acquiring and processing knowledge,this paper reviews its development and emphasizes the role that it played in the development of knowledge engineering.Finally,some challenges and further trends are discussed. 展开更多
关键词 Complex network knowledge graph networked knowledge neural network
下载PDF
Structure of Chinese City Network as Driven by Technological Knowledge Flows 被引量:32
17
作者 MA Haitao FANG Chuanglin +1 位作者 PANG Bo WANG Shaojian 《Chinese Geographical Science》 SCIE CSCD 2015年第4期498-510,共13页
Based on patent cooperation data,this study used a range of city network analysis approaches in order to explore the structure of the Chinese city network which is driven by technological knowledge flows.The results r... Based on patent cooperation data,this study used a range of city network analysis approaches in order to explore the structure of the Chinese city network which is driven by technological knowledge flows.The results revealed the spatial structure,composition structure,hierarchical structure,group structure,and control structure of Chinese city network,as well as its dynamic factors.The major findings are:1) the spatial pattern presents a diamond structure,in which Wuhan is the central city;2) although the invention patent knowledge network is the main part of the broader inter-city innovative cooperation network,it is weaker than the utility model patent;3) as the senior level cities,Beijing,Shanghai and the cities in the Zhujiang(Pearl) River Delta Region show a strong capability of both spreading and controlling technological knowledge;4) whilst a national technology alliance has preliminarily formed,regional alliances have not been adequately established;5) even though the cooperation level amongst weak connection cities is not high,such cities still play an important role in the network as a result of their location within ′structural holes′ in the network;and 6) the major driving forces facilitating inter-city technological cooperation are geographical proximity,hierarchical proximity and technological proximity. 展开更多
关键词 technological knowledge flows patent cooperation city networks network structure structure holes cohesive subgroup
下载PDF
Experts' Knowledge Fusion in Model-Based Diagnosis Based on Bayes Networks 被引量:5
18
作者 Deng Yong & Shi Wenkang School of Electronics & Information Technology, Shanghai Jiaotong University, Shanghai 200030, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第2期25-30,共6页
In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty ... In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge. 展开更多
关键词 Model-based diagnosis Experts' knowledge Probabilistic assumption-based reasoning Bayes networks.
下载PDF
Modeling and Robustness of Knowledge Network in Supply Chain 被引量:1
19
作者 王道平 沈睿芳 《Transactions of Tianjin University》 EI CAS 2014年第2期151-156,共6页
The growth and evolution of the knowledge network in supply chain can be characterized by dynamic growth clustering and non-homogeneous degree distribution.The networks with the above characteristics are also known as... The growth and evolution of the knowledge network in supply chain can be characterized by dynamic growth clustering and non-homogeneous degree distribution.The networks with the above characteristics are also known as scale-free networks.In this paper,the knowledge network model in supply chain is established,in which the preferential attachment mechanism based on the node strength is adopted to simulate the growth and evolution of the network.The nodes in the network have a certain preference in the choice of a knowledge partner.On the basis of the network model,the robustness of the three network models based on different preferential attachment strategies is investigated.The robustness is also referred to as tolerances when the nodes are subjected to random destruction and malicious damage.The simulation results of this study show that the improved network has higher connectivity and stability. 展开更多
关键词 knowledge network preferential attachment MODELING ROBUSTNESS
下载PDF
Establishing the knowledge repository of rapidly solidified aging Cu-Cr-Zr alloy on the artificial neural-network 被引量:3
20
作者 SUJuanhua DONGQiming +3 位作者 LIUPing LIHejun KANGBuxi TIANBaohong 《Rare Metals》 SCIE EI CAS CSCD 2004年第2期171-175,共5页
The non-linear relationship between parameters of rapidly solidified agingprocesses and mechancal and electrical properties of Cu-Cr-Zr alloy is available by using asupervised artificial neural network (ANN). A knowle... The non-linear relationship between parameters of rapidly solidified agingprocesses and mechancal and electrical properties of Cu-Cr-Zr alloy is available by using asupervised artificial neural network (ANN). A knowledge repository of rapidly solidified agingprocesses is established via sufficient data learning by the network. The predicted values of theneural network are in accordance with the tested data. So an effective measure for foreseeing andcontrolling the properties of the processing is provided. 展开更多
关键词 Cu-Cr-Zr alloy knowledge repository artificial neural network rapidsolidifiation aging
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部